scholarly journals Using Scientific Computing to Advance Wildland Fire Monitoring and Prediction

Author(s):  
Janice Coen
Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5081
Author(s):  
Joshua M. Johnston ◽  
Natasha Jackson ◽  
Colin McFayden ◽  
Linh Ngo Phong ◽  
Brian Lawrence ◽  
...  

In 2019 the Canadian Space Agency initiated development of a dedicated wildfire monitoring satellite (WildFireSat) mission. The intent of this mission is to support operational wildfire management, smoke and air quality forecasting, and wildfire carbon emissions reporting. In order to deliver the mission objectives, it was necessary to identify the technical and operational challenges which have prevented broad exploitation of Earth Observation (EO) in Canadian wildfire management and to address these challenges in the mission design. In this study we emphasize the first objective by documenting the results of wildfire management end-user engagement activities which were used to identify the key Fire Management Functionalities (FMFs) required for an Earth Observation wildfire monitoring system. These FMFs are then used to define the User Requirements for the Canadian Wildland Fire Monitoring System (CWFMS) which are refined here for the WildFireSat mission. The User Requirements are divided into Observational, Measurement, and Precision requirements and form the foundation for the design of the WildFireSat mission (currently in Phase-A, summer 2020).


2003 ◽  
Vol 12 (2) ◽  
pp. 237 ◽  
Author(s):  
R. Kremens ◽  
J. Faulring ◽  
A. Gallagher ◽  
A. Seema ◽  
A. Vodacek

An Autonomous Fire Detector (AFD) is a miniature electronic package combining position location capability [using the Global Positioning System (GPS)], communications (packet or voice-synthesized radio), and fire detection capability (thermal, gas, smoke detector) into an inexpensive, deployable package. The AFD can report fire-related parameters, like temperature, carbon monoxide concentration, or smoke levels via a radio link to firefighters located on the ground. These systems are designed to be inserted into the fire by spotter planes at a fire site or positioned by firefighters already on the ground. AFDs can also be used as early warning devices near critical assets in the urban–wildland interface. AFDs can now be made with commercial off-the-shelf components. Using modern micro-electronics, an AFD can operate for the duration of even the longest fire (weeks) using a simple dry battery pack, and can be designed to have a transmitting range of up to several kilometers with current low power radio communication technology. A receiver to capture the data stream from the AFD can be made as light, inexpensive and portable as the AFD itself. Inexpensive portable repeaters can be used to extend the range of the AFD and to coordinate many probes into an autonomous fire monitoring network.


Sign in / Sign up

Export Citation Format

Share Document