Effect of Hyper-Damped Poles on the Step-Response of a Second-Order System under Proportional-Half-Derivative Feedback

Author(s):  
Lisa Nakahara ◽  
Noriyuki Hori
2018 ◽  
Vol 7 (2.21) ◽  
pp. 77 ◽  
Author(s):  
Lalu Seban ◽  
Namita Boruah ◽  
Binoy K. Roy

Most of industrial process can be approximately represented as first-order plus delay time (FOPDT) model or second-order plus delay time (FOPDT) model. From a control point of view, it is important to estimate the FOPDT or SOPDT model parameters from arbitrary process input as groomed test like step test is not always feasible. Orthonormal basis function (OBF) are class of model structure having many advantages, and its parameters can be estimated from arbitrary input data. The OBF model filters are functions of poles and hence accuracy of the model depends on the accuracy of the poles. In this paper, a simple and standard particle swarm optimisation technique is first employed to estimate the dominant discrete poles from arbitrary input and corresponding process output. Time constant of first order system or period of oscillation and damping ratio of second order system is calculated from the dominant poles. From the step response of the developed OBF model, time delay and steady state gain are estimated. The parameter accuracy is improved by employing an iterative scheme. Numerical examples are provided to show the accuracy of the proposed method. 


2018 ◽  
pp. 46-57
Author(s):  
Richard J. Jagacinski ◽  
John M. Flach

2014 ◽  
Vol 651-653 ◽  
pp. 528-533 ◽  
Author(s):  
Zhi Gang Jia ◽  
Xing Xuan Wang

An identification method of a class of second-order continuous system is proposed. This method constructs a discrete-time identification model, forms a set of linear equations. The parameters can be obtained by least square method. Simulation results show that the method is effective for a class of second-order system, and is not only for step response but also for square wave signal.


2011 ◽  
Vol 55-57 ◽  
pp. 224-228
Author(s):  
Gao Fei Guo ◽  
Shun Xiang Wu ◽  
Da Cao

This paper analyses the transient response of second-order system through time domain analysis, root locus and frequency domain analysis, meanwhile, studies the influence exerted to the system by the second-order system damping ratio and the coefficient ratio as well as the research and damping ratio associated with the relevant parameters, like delay time, rise time, peak time, overshoot, time regulation, basing on the unit step response, and the stability of the system is studied by root locus. Finally, graphics are built through the application of Matlab in order to have an intuitive understanding of the impact on the performance of the system.


2021 ◽  
Vol 11 (8) ◽  
pp. 3430
Author(s):  
Erik Cuevas ◽  
Héctor Becerra ◽  
Héctor Escobar ◽  
Alberto Luque-Chang ◽  
Marco Pérez ◽  
...  

Recently, several new metaheuristic schemes have been introduced in the literature. Although all these approaches consider very different phenomena as metaphors, the search patterns used to explore the search space are very similar. On the other hand, second-order systems are models that present different temporal behaviors depending on the value of their parameters. Such temporal behaviors can be conceived as search patterns with multiple behaviors and simple configurations. In this paper, a set of new search patterns are introduced to explore the search space efficiently. They emulate the response of a second-order system. The proposed set of search patterns have been integrated as a complete search strategy, called Second-Order Algorithm (SOA), to obtain the global solution of complex optimization problems. To analyze the performance of the proposed scheme, it has been compared in a set of representative optimization problems, including multimodal, unimodal, and hybrid benchmark formulations. Numerical results demonstrate that the proposed SOA method exhibits remarkable performance in terms of accuracy and high convergence rates.


Sign in / Sign up

Export Citation Format

Share Document