Data-Driven Statistical Analysis of Dynamic Vessel Trajectories in Wuhan Section of the Yangtze River

Author(s):  
Maohan Liang ◽  
Ryan Wen Liu ◽  
Yan Li ◽  
Jianhua Wu ◽  
Jingxian Liu
2021 ◽  
Vol 13 (17) ◽  
pp. 9985
Author(s):  
Xiaoyuan Zhao ◽  
Haiwen Yuan ◽  
Qing Yu

The prototypes of autonomous vessels are expected to come into service within the coming years, but safety concerns remain due to complex traffic and natural conditions (e.g., Yangtze River). However, the response of autonomous vessels to potential accidents is still uncertain. The accident prevention for autonomous vessels is unconvincing due to the lack of objective studies on the causation analysis for maritime accidents. This paper constitutes an attempt to cover the aforementioned gap by studying the potential causations for maritime accidents in the Yangtze River by using a Bayesian-based network training approach. More than two hundred accidents reported between 2013 and 2019 in the Yangtze River are collected. As a result, a Bayesian network (BN) is successfully established to describe the causations among different risk influencing factors. By analysing the BN, this study reveals that the occurrence of maritime accidents (e.g., collision, grounding) can be expected to reduce with the development of autonomous vessels as the crews are removed. However, the extent of the consequences from some accidents (e.g., fire, critical weathers) could be more serious than conventional ones. Therefore, more attention and thoughts are needed to ensure the safe navigation of autonomous vessels in the Yangtze River.


2004 ◽  
Vol 88 (8) ◽  
pp. 59-64
Author(s):  
Changyu Shao ◽  
Qinger Deng

2014 ◽  
Vol 21 (6) ◽  
pp. 688-698
Author(s):  
Sun Shasha ◽  
Tang Wenqiao ◽  
Guo Hongyi ◽  
Li Huihua ◽  
Liu Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document