scholarly journals Fine-Grained Representation Learning and Recognition by Exploiting Hierarchical Semantic Embedding

Author(s):  
Tianshui Chen ◽  
Wenxi Wu ◽  
Yuefang Gao ◽  
Le Dong ◽  
Xiaonan Luo ◽  
...  
Author(s):  
Qiang Wang ◽  
Mengdan Zhang ◽  
Junliang Xing ◽  
Jin Gao ◽  
Weiming Hu ◽  
...  

This work presents a novel end-to-end trainable CNN model for high performance visual object tracking. It learns both low-level fine-grained representations and a high-level semantic embedding space in a mutual reinforced way, and a multi-task learning strategy is proposed to perform the correlation analysis on representations from both levels. In particular, a fully convolutional encoder-decoder network is designed to reconstruct the original visual features from the semantic projections to preserve all the geometric information. Moreover, the correlation filter layer working on the fine-grained representations leverages a global context constraint for accurate object appearance modeling. The correlation filter in this layer is updated online efficiently without network fine-tuning. Therefore, the proposed tracker benefits from two complementary effects: the adaptability of the fine-grained correlation analysis and the generalization capability of the semantic embedding. Extensive experimental evaluations on four popular benchmarks demonstrate its state-of-the-art performance.


2021 ◽  
Vol 58 (5) ◽  
pp. 102678
Author(s):  
Xueqin Chen ◽  
Fan Zhou ◽  
Fengli Zhang ◽  
Marcello Bonsangue

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4486
Author(s):  
Niall O’Mahony ◽  
Sean Campbell ◽  
Lenka Krpalkova ◽  
Anderson Carvalho ◽  
Joseph Walsh ◽  
...  

Fine-grained change detection in sensor data is very challenging for artificial intelligence though it is critically important in practice. It is the process of identifying differences in the state of an object or phenomenon where the differences are class-specific and are difficult to generalise. As a result, many recent technologies that leverage big data and deep learning struggle with this task. This review focuses on the state-of-the-art methods, applications, and challenges of representation learning for fine-grained change detection. Our research focuses on methods of harnessing the latent metric space of representation learning techniques as an interim output for hybrid human-machine intelligence. We review methods for transforming and projecting embedding space such that significant changes can be communicated more effectively and a more comprehensive interpretation of underlying relationships in sensor data is facilitated. We conduct this research in our work towards developing a method for aligning the axes of latent embedding space with meaningful real-world metrics so that the reasoning behind the detection of change in relation to past observations may be revealed and adjusted. This is an important topic in many fields concerned with producing more meaningful and explainable outputs from deep learning and also for providing means for knowledge injection and model calibration in order to maintain user confidence.


2020 ◽  
Vol 38 (4) ◽  
pp. 1-26
Author(s):  
Xiaolin Chen ◽  
Xuemeng Song ◽  
Ruiyang Ren ◽  
Lei Zhu ◽  
Zhiyong Cheng ◽  
...  

Author(s):  
Weichun Liu ◽  
Xiaoan Tang ◽  
Chenglin Zhao

Recently, deep trackers based on the siamese networking are enjoying increasing popularity in the tracking community. Generally, those trackers learn a high-level semantic embedding space for feature representation but lose low-level fine-grained details. Meanwhile, the learned high-level semantic features are not updated during online tracking, which results in tracking drift in presence of target appearance variation and similar distractors. In this paper, we present a novel end-to-end trainable Convolutional Neural Network (CNN) based on the siamese network for distractor-aware tracking. It enhances target appearance representation in both the offline training stage and online tracking stage. In the offline training stage, this network learns both the low-level fine-grained details and high-level coarse-grained semantics simultaneously in a multi-task learning framework. The low-level features with better resolution are complementary to semantic features and able to distinguish the foreground target from background distractors. In the online stage, the learned low-level features are fed into a correlation filter layer and updated in an interpolated manner to encode target appearance variation adaptively. The learned high-level features are fed into a cross-correlation layer without online update. Therefore, the proposed tracker benefits from both the adaptability of the fine-grained correlation filter and the generalization capability of the semantic embedding. Extensive experiments are conducted on the public OTB100 and UAV123 benchmark datasets. Our tracker achieves state-of-the-art performance while running with a real-time frame-rate.


Author(s):  
Zhu Sun ◽  
Jie Yang ◽  
Jie Zhang ◽  
Alessandro Bozzon ◽  
Yu Chen ◽  
...  

Representation learning (RL) has recently proven to be effective in capturing local item relationships by modeling item co-occurrence in individual user's interaction record. However, the value of RL for recommendation has not reached the full potential due to two major drawbacks: 1) recommendation is modeled as a rating prediction problem but should essentially be a personalized ranking one; 2) multi-level organizations of items are neglected for fine-grained item relationships. We design a unified Bayesian framework MRLR to learn user and item embeddings from a multi-level item organization, thus benefiting from RL as well as achieving the goal of personalized ranking. Extensive validation on real-world datasets shows that MRLR consistently outperforms state-of-the-art algorithms.


Sign in / Sign up

Export Citation Format

Share Document