Hierarchical Community Structure Preserving Network Embedding

Author(s):  
Qingqing Long ◽  
Yiming Wang ◽  
Lun Du ◽  
Guojie Song ◽  
Yilun Jin ◽  
...  
Author(s):  
Lun Du ◽  
Zhicong Lu ◽  
Yun Wang ◽  
Guojie Song ◽  
Yiming Wang ◽  
...  

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification and network visualization. The source code of GNE is available online.


2021 ◽  
Vol 546 ◽  
pp. 1084-1096
Author(s):  
Zhen Duan ◽  
Xian Sun ◽  
Shu Zhao ◽  
Jie Chen ◽  
Yanping Zhang ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 1-23
Author(s):  
Guojie Song ◽  
Yun Wang ◽  
Lun Du ◽  
Yi Li ◽  
Junshan Wang

Network embedding is a method of learning a low-dimensional vector representation of network vertices under the condition of preserving different types of network properties. Previous studies mainly focus on preserving structural information of vertices at a particular scale, like neighbor information or community information, but cannot preserve the hierarchical community structure, which would enable the network to be easily analyzed at various scales. Inspired by the hierarchical structure of galaxies, we propose the Galaxy Network Embedding (GNE) model, which formulates an optimization problem with spherical constraints to describe the hierarchical community structure preserving network embedding. More specifically, we present an approach of embedding communities into a low-dimensional spherical surface, the center of which represents the parent community they belong to. Our experiments reveal that the representations from GNE preserve the hierarchical community structure and show advantages in several applications such as vertex multi-class classification, network visualization, and link prediction. The source code of GNE is available online.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Dong Liu ◽  
Yan Ru ◽  
Qinpeng Li ◽  
Shibin Wang ◽  
Jianwei Niu

Network embedding aims to learn the low-dimensional representations of nodes in networks. It preserves the structure and internal attributes of the networks while representing nodes as low-dimensional dense real-valued vectors. These vectors are used as inputs of machine learning algorithms for network analysis tasks such as node clustering, classification, link prediction, and network visualization. The network embedding algorithms, which considered the community structure, impose a higher level of constraint on the similarity of nodes, and they make the learned node embedding results more discriminative. However, the existing network representation learning algorithms are mostly unsupervised models; the pairwise constraint information, which represents community membership, is not effectively utilized to obtain node embedding results that are more consistent with prior knowledge. This paper proposes a semisupervised modularized nonnegative matrix factorization model, SMNMF, while preserving the community structure for network embedding; the pairwise constraints (must-link and cannot-link) information are effectively fused with the adjacency matrix and node similarity matrix of the network so that the node representations learned by the model are more interpretable. Experimental results on eight real network datasets show that, comparing with the representative network embedding methods, the node representations learned after incorporating the pairwise constraints can obtain higher accuracy in node clustering task and the results of link prediction, and network visualization tasks indicate that the semisupervised model SMNMF is more discriminative than unsupervised ones.


2020 ◽  
Vol 24 (5) ◽  
pp. 1207-1233
Author(s):  
Phu Pham ◽  
Phuc Do

Heterogeneous information network (HIN) are becoming popular across multiple applications in forms of complex large-scaled networked data such as social networks, bibliographic networks, biological networks, etc. Recently, information network embedding (INE) has aroused tremendously interests from researchers due to its effectiveness in information network analysis and mining tasks. From recent views of INE, community is considered as the mesoscopic preserving network’s structure which can be combined with traditional approach of network’s node proximities (microscopic structure preserving) to leverage the quality of network’s representation. Most of contemporary INE models, like as: HIN2Vec, Metapath2Vec, HINE, etc. mainly concentrate on microscopic network structure preserving and ignore the mesoscopic (intra-community) structure of HIN. In this paper, we introduce a novel approach of topic-driven meta-path-based embedding, namely W-Com2Vec (Weighted intra-community to vector). Our proposed W-Com2Vec model enables to capture richer semantic of node representation by applying the meta-path-based community-aware, node proximity preserving and topic similarity evaluation at the same time during the process of network embedding. We demonstrate comprehensive empirical studies on our proposed W-Com2Vec model with several real-world HINs. Experimental results show W-Com2Vec outperforms recent state-of-the-art INE models in solving primitive network analysis and mining tasks.


Information ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 186
Author(s):  
Hanlin Sun ◽  
Wei Jie ◽  
Jonathan Loo ◽  
Liang Chen ◽  
Zhongmin Wang ◽  
...  

Presently, data that are collected from real systems and organized as information networks are universal. Mining hidden information from these data is generally helpful to understand and benefit the corresponding systems. The challenges of analyzing such data include high computational complexity and low parallelizability because of the nature of complicated interconnected structure of their nodes. Network representation learning, also called network embedding, provides a practical and promising way to solve these issues. One of the foremost requirements of network embedding is preserving network topology properties in learned low-dimension representations. Community structure is a prominent characteristic of complex networks and thus should be well maintained. However, the difficulty lies in the fact that the properties of community structure are multivariate and complicated; therefore, it is insufficient to model community structure using a predefined model, the way that is popular in most state-of-the-art network embedding algorithms explicitly considering community structure preservation. In this paper, we introduce a multi-process parallel framework for network embedding that is enhanced by found partial community information and can preserve community properties well. We also implement the framework and propose two node embedding methods that use game theory for detecting partial community information. A series of experiments are conducted to evaluate the performance of our methods and six state-of-the-art algorithms. The results demonstrate that our methods can effectively preserve community properties of networks in their low-dimension representations. Specifically, compared to the involved baselines, our algorithms behave the best and are the runners-up on networks with high overlapping diversity and density.


Author(s):  
Yu Li ◽  
Ying Wang ◽  
Tingting Zhang ◽  
Jiawei Zhang ◽  
Yi Chang

Network embedding is an effective approach to learn the low-dimensional representations of vertices in networks, aiming to capture and preserve the structure and inherent properties of networks. The vast majority of existing network embedding methods exclusively focus on vertex proximity of networks, while ignoring the network internal community structure. However, the homophily principle indicates that vertices within the same community are more similar to each other than those from different communities, thus vertices within the same community should have similar vertex representations. Motivated by this, we propose a novel network embedding framework NECS to learn the Network Embedding with Community Structural information, which preserves the high-order proximity and incorporates the community structure in vertex representation learning. We formulate the problem into a principled optimization framework and provide an effective alternating algorithm to solve it. Extensive experimental results on several benchmark network datasets demonstrate the effectiveness of the proposed framework in various network analysis tasks including network reconstruction, link prediction and vertex classification.


Sign in / Sign up

Export Citation Format

Share Document