A Novel Optimized Design of Energy Efficient Lights for Producing Uniform Illumination by Harnessing Photoluminescent Properties of 'Strontium Aluminate'

Author(s):  
Vijay A. Kanade
2005 ◽  
Vol 128 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Bahareh Behkam ◽  
Metin Sitti

Miniature and energy-efficient propulsion systems hold the key to maturing the technology of swimming microrobots. In this paper, two new methods of propulsion inspired by the motility mechanism of prokaryotic and eukaryotic microorganisms are proposed. Hydrodynamic models for each of the two methods are developed, and the optimized design parameters for each of the two propulsion modes are demonstrated. To validate the theoretical result for the prokaryotic flagellar motion, a scaled-up prototype of the robot is fabricated and tested in silicone oil, using the Buckingham PI theorem for scaling. The proposed propulsion methods are appropriate for the swimming robots that are intended to swim in low-velocity fluids.


2018 ◽  
Vol 2018 (1) ◽  

Buildings in Turkey consume a great amount of energy to supply comfort conditions. This is due to the ineffective design decisions by designers with no consideration of the environmental impact and energy efficiency. Thus, building design parameters should be studied and examined during the design stage considering the environment that is a crucial factor for the energy efficient building design, which may lead to better energy performance and fewer CO2 emission. BIM as a new way of working methodology enables energy efficient design solutions considering design parameters for the improved high building performance in Turkey. Therefore, this research aims to develop a strategic BIM framework encapsulating the optimized design process, technology implementation, building design rules considering the local values and energy performance assessment of the concept building design. Research adopts multi case studies methodology that helps to gain qualitative and quantitative insights and understand the current practices. Revit based BIM modelling is used with Design Builder for energy performance simulation in relation to the building design parameters. The outcome will be a design guide for the energy optimised building design in Turkey. This design guide will help designers to successful use of BIM for design optimization process, effective technology implementation, rules-based design development and energy assessment scheme reflecting local values for sustainable building design.


2018 ◽  
Vol 8 (12) ◽  
pp. 2477 ◽  
Author(s):  
Andrea Ferrantelli ◽  
Karl-Villem Võsa ◽  
Jarek Kurnitski

Heat emitters, as the primary devices used in space heating, cover a fundamental role in the energy efficient use of buildings. In the search for an optimized design, heating devices should be compared with a benchmark emitter with maximum heat emission efficiency. However, such an ideal heater still needs to be defined. In this paper we perform an analysis of heat transfer in a European reference room, considering surface effects of thermal radiation and computing the induced operative temperature (op.t.) both analytically and numerically. Our ideal heater is the one determining the highest op.t. By means of functional optimization, we analyse trends such as the variation of operative temperature with radiator panel dimensions, finding optimal configurations. To make our definitions as general as possible, we address panel radiators, convectors, underfloor (UFH) and ceiling heater. We obtain analytical formulas for the operative temperature induced by panel radiators and identify the 10-type as our ideal radiator, while the UFH provides the best performance overall. Regarding specifically UFH and ceiling heaters, we find optimal sizes providing maximum op.t. The analytical method and qualitative results reported in this paper can be generalized and adopted in most studies concerning the efficiency of different heat emitter types in building enclosures.


2018 ◽  
pp. 110-121 ◽  
Author(s):  
Suddhasatwa Chakraborty ◽  
Pritha Barua ◽  
Soumendu Bhattacharjee ◽  
Saswati Mazumdar

Road lighting consumes a significant portion of global electricity. A good road lighting design ensures the fulfilment of visual requirements with optimized design. The initial step for a good road lighting design is to identify the exact lighting class of the concerned road. The existing Indian Road lighting Standard IS: 1944, 1970 is not so well defined with respect to the modern Indian roads. It demands a specific model for classifying any Indian road. This paper focuses towards the validation of a proposed model, which is a modified mathematical model as recommended by CIE: 115, 2010 for classifying the exact lighting category of the Indian roads. This paper also highlights the scope of energy saving by changing the design according to the changed lighting class during different traffic hours in night. Some innovative design is also proposed for a new road based on the proposed classification methodology.


Author(s):  
Andrea Ferrantelli ◽  
Karl-Villem Võsa ◽  
Jarek Kurnitski

Heat emitters constitute the primary devices used in space heating and cover a fundamental role in the energy efficient use of buildings. In the search for an optimized design, heating devices should be compared with a benchmark emitter with maximum heat emission efficiency. However, such an ideal heater still needs to be defined. In this paper we perform an analysis of heat transfer in a European reference room, considering room side effects of thermal radiation and computing the induced operative temperature both analytically and numerically. By means of functional optimization, we analyse trends such as the variation of operative temperature with radiator panel dimensions, finding optimal configurations. In order to make our definitions as general as possible, we address panel radiators, convectors, underfloor (UFH) and ceiling heater. We obtain analytical formulas for the operative temperature induced by panel radiators and identify the 10-type as our ideal radiator, while the UFH provides the best performance overall. Regarding specifically UFH and ceiling heaters, we find optimal sizes that identify the according ideal emitters. The analytical method and quantitative results reported in this paper can be generalized and adopted in most studies concerning the efficiency of different heat emitter types in building enclosures.


Author(s):  
Andrea Ferrantelli ◽  
Karl-Villem Võsa ◽  
Jarek Kurnitski

Heat emitters constitute the primary devices used in space heating and cover a fundamental role in the energy efficient use of buildings. In the search for an optimized design, heating devices should be compared with a benchmark emitter with maximum heat emission efficiency. However, such an ideal heater still needs to be defined. In this paper we perform an analysis of heat transfer in a European reference room, considering room side effects of thermal radiation and computing the induced operative temperature both analytically and numerically. By means of functional optimization, we analyse trends such as the variation of operative temperature with radiator panel dimensions, finding optimal configurations. In order to make our definitions as general as possible, we address panel radiators, convectors, underfloor (UFH) and ceiling heating. We obtain analytical formulas for the operative temperature induced by panel radiators and identify the 10-type as our ideal radiator, while the UFH provides the best performance overall. Regarding specifically UFH and ceiling heaters, we find optimal sizes that identify the according ideal emitters. The analytical method and quantitative results reported in this paper can be generalized and adopted in most studies concerning the efficiency of different heat emitter types in building enclosures.


Author(s):  
Andrea Ferrantelli ◽  
Karl-Villem Võsa ◽  
Jarek Kurnitski

Heat emitters constitute the primary devices used in space heating and cover a fundamental role in the energy efficient use of buildings. In the search for an optimized design, heating devices should be compared with a benchmark emitter with maximum heat emission efficiency. However, such an ideal heater still needs to be defined. In this paper we perform an analysis of heat transfer in a European reference room, considering room side effects of thermal radiation and computing the induced operative temperature both analytically and numerically. By means of functional optimization, we analyse trends such as the variation of operative temperature with radiator panel dimensions, finding optimal configurations. In order to make our definitions as general as possible, we address panel radiators, convectors, underfloor (UFH) and ceiling heater. We obtain analytical formulas for the operative temperature induced by panel radiators and identify the 10-type as our ideal radiator, while the UFH provides the best performance overall. Regarding specifically UFH and ceiling heaters, we find optimal sizes that identify the according ideal emitters. The analytical method and quantitative results reported in this paper can be generalized and adopted in most studies concerning the efficiency of different heat emitter types in building enclosures.


Sign in / Sign up

Export Citation Format

Share Document