A Single Task Migration Strategy Based on Ant Colony Algorithm in Mobile-Edge Computing

Author(s):  
Juan Fang ◽  
Weihao Xu
Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 190
Author(s):  
Wu Ouyang ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Genghua Yu ◽  
Heng Zhang

As transportation becomes more convenient and efficient, users move faster and faster. When a user leaves the service range of the original edge server, the original edge server needs to migrate the tasks offloaded by the user to other edge servers. An effective task migration strategy needs to fully consider the location of users, the load status of edge servers, and energy consumption, which make designing an effective task migration strategy a challenge. In this paper, we innovatively proposed a mobile edge computing (MEC) system architecture consisting of multiple smart mobile devices (SMDs), multiple unmanned aerial vehicle (UAV), and a base station (BS). Moreover, we establish the model of the Markov decision process with unknown rewards (MDPUR) based on the traditional Markov decision process (MDP), which comprehensively considers the three aspects of the migration distance, the residual energy status of the UAVs, and the load status of the UAVs. Based on the MDPUR model, we propose a advantage-based value iteration (ABVI) algorithm to obtain the effective task migration strategy, which can help the UAV group to achieve load balancing and reduce the total energy consumption of the UAV group under the premise of ensuring user service quality. Finally, the results of simulation experiments show that the ABVI algorithm is effective. In particular, the ABVI algorithm has better performance than the traditional value iterative algorithm. And in a dynamic environment, the ABVI algorithm is also very robust.


Author(s):  
Yichuan Wang ◽  
He Zhu ◽  
Xinhong Hei ◽  
Yue Kong ◽  
Wenjiang Ji ◽  
...  

2021 ◽  
Vol 17 (2) ◽  
pp. 155014772199340
Author(s):  
Lanlan Rui ◽  
Shuyun Wang ◽  
Zhili Wang ◽  
Ao Xiong ◽  
Huiyong Liu

Mobile edge computing is a new computing paradigm, which pushes cloud computing capabilities away from the centralized cloud to the network edge to satisfy the increasing amounts of low-latency tasks. However, challenges such as service interruption caused by user mobility occur. In order to address this problem, in this article, we first propose a multiple service placement algorithm, which initializes the placement of each service according to the user’s initial location and their service requests. Furthermore, we build a network model and propose a based on Lyapunov optimization method with long-term cost constraints. Considering the importance of user mobility, we use the Kalman filter to correct the user’s location to improve the success rate of communication between the device and the server. Compared with the traditional scheme, extensive simulation results show that the dynamic service migration strategy can effectively improve the service efficiency of mobile edge computing in the user’s mobile scene, reduce the delay of requesting terminal nodes, and reduce the service interruption caused by frequent user movement.


2021 ◽  
Vol 11 (17) ◽  
pp. 7993
Author(s):  
Yu Dai ◽  
Qiuhong Zhang ◽  
Lei Yang

Mobile edge computing is a new computing model, which pushes cloud computing power from centralized cloud to network edge. However, with the sinking of computing power, user mobility brings new challenges: since it is usually unstable, services should be dynamically migrated between multiple edge servers to maintain service performance, that is, user-perceived latency. Considering that Mobile Edge Computing is a highly distributed computing environment and it is difficult to synchronize information between servers, in order to ensure the real-time performance of the migration strategy, a virtual machine migration strategy based on Multi-Agent Deep Reinforcement Learning is proposed in this paper. The method of centralized training and distributed execution is adopted, that is, the transfer action is guided by the global information during training, and only the local observation information is needed to obtain the transfer action. Compared with the centralized control method, the proposed method alleviates communication bottleneck. Compared with other distributed control methods, this method only needs local information, does not need communication between servers, and speeds up the perception of the current environment. Migration strategies can be generated faster. Simulation results show that the proposed strategy is better than the contrast strategy in terms of convergence and energy consumption.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhu Liu ◽  
Xuesong Qiu ◽  
Nan Zhang

With the development of power IoTs (Internet of Things) technology, more and more intelligent devices access the network. Cloud computing is used to provide the resource storage and task computing services for power network. However, there are many problems with traditional cloud computing such as the long-time delay and resource bottleneck. Therefore, in this paper, a two-level resource management scheme is put forward based on the idea of edge computing. Furthermore, a new task scheduling algorithm is presented based on the ant colony algorithm, which realized the resource sharing and dynamic scheduling. The data of simulation show that this algorithm has a good effect on the performance of task execution time, power consumption, and so on.


Sign in / Sign up

Export Citation Format

Share Document