Organic Open-cell Porous Structure Modeling

Author(s):  
Lihao Tian ◽  
Lin Lu ◽  
Weikai Chen ◽  
Yang Xia ◽  
Charlie C. L. Wang ◽  
...  
2014 ◽  
Vol 1662 ◽  
Author(s):  
Max Larner ◽  
John Acker ◽  
Lilian P. Dávila

ABSTRACTLightweight porous foams have been of particular interest in recent years, since they have a very unique set of properties which can be significantly different from their solid parent materials. These properties arise from their random porous structure which is generated through specialized processing techniques. Their unique structure gives these materials interesting properties which allow them to be used in diverse applications. In particular, highly porous Al foams have been used in aircraft components and sound insulation; however due to the difficulty in processing and the random nature of the foams, they are not well understood and thus have not yet been utilized to their full potential. The objective of this study was to integrate experiments and simulations to determine whether a relationship exists between the relative density (porous density/bulk density) and the mechanical properties of open-cell Al foams. Compression experiments were performed using an Instron Universal Testing Machine (IUTM) on ERG Duocel open-cell Al foams with 5.8% relative density, with compressive loads ranging from 0-6 MPa. Foam models were generated using a combination of an open source code, Voro++, and MATLAB. A Finite Element Method (FEM)-based software, COMSOL Multiphysics 4.3, was used to simulate the mechanical behavior of Al foam structures under compressive loads ranging from 0-2 MPa. From these simulated structures, the maximum von Mises stress, volumetric strain, and other properties were calculated. These simulation results were compared against data from compression experiments. CES EduPack software, a materials design program, was also used to estimate the mechanical properties of open-cell foams for values not available experimentally, and for comparison purposes. This program allowed for accurate prediction of the mechanical properties for a given percent density foam, and also provided a baseline for the Al foam samples tested via the IUTM method. Predicted results from CES EduPack indicate that a 5.8% relative density foam will have a Young’s Modulus of 0.02-0.92 GPa while its compressive strength will be 0.34-3.37 MPa. Overall results revealed a relationship between pores per inch and selected mechanical properties of Al foams. The methods developed in this study can be used to efficiently generate open-cell foam models, and to combine experiments and simulations to calculate structure-property relationships and predict yielding and failure, which may help in the pursuit of simulation-based design of metallic foams. This study can help to improve the current methods of characterizing foams and porous materials, and enhance knowledge about theirproperties for novel applications.


2014 ◽  
Vol 794-796 ◽  
pp. 790-795
Author(s):  
Makoto Kobashi ◽  
Naoyuki Kanetake

In this paper, a novel processing method (reactive precursor method) to manufacture high-melting point porous Al-Ti intermetallics is investigated. Especially, morphological control of porous structure is focused. In the reactive precursor process, precursors are made by blending aluminum and titanium powders. The precursor is heated to ignite an exothermic reaction (so called “combustion reaction”) between the elemental powders. Pore formation is a well-known intrinsic feature of the combustion reaction, and we tried to control the pore morphology. Fundamentally, the closed-cell structure can be obtained when the maximum temperature during the reaction exceeds the melting point of the reaction product. By blending the exothermic agent powder in the precursor, the maximum temperature is increased and the reaction products are melted. The porosity is controlled by the maximum temperature. In contrast, an open-cell porous structure can be obtained when the maximum temperature is below the melting point of the reaction product. Microwave heating turned out to be an effective method to create an open cell structure. A powdery substance that does not react with other elemental powders (heat-absorbing agent powder) decreases the temperature during the reaction. Closed, open and bimodal-sized open pores have been achieved by the reactive precursor process so far.


2016 ◽  
Vol 22 (4) ◽  
pp. 752-765 ◽  
Author(s):  
Jatender Pal Singh ◽  
Pulak M. Pandey ◽  
Anita Kamra Verma

Purpose Scaffolds are essentially required to have open porous structure for facilitating bone to grow. They are generally placed on those bone defective/fractured sites which are more prone to compressive loading. Open porous structure lacks in strength in comparison to solid. Selective laser sintering (SLS) process is prominently used for fabrication of polymer/composite scaffolds. So, this paper aims to study for fabrication of three-dimensional open porous scaffolds with enhanced strength, process parameters of SLS of a biocompatible material are required to be optimized. Design/methodology/approach Regular open porous structures with suitable pore size as per computer-aided design models were fabricated using SLS. Polyamide (PA-2200) was used to fabricate the specimen/scaffold. To optimize the strength of the designed structure, response surface methodology was used to design the experiments. Specimens as per ASTM D695 were fabricated using SLS and compressive testing was carried out. Analysis of variance was done for estimating contribution of individual process parameters. Optimized process parameters were obtained using a trust region algorithm and correlated with experimental results. Accuracy of the fabricated specimen/scaffold was also assessed in terms of IT grades. In vitro cell culture on the fabricated structures confirmed the biocompatibility of polyamide (PA-2200). Findings Optimized process parameters for open cell process structures were obtained and confirmed experimentally. Laser power, hatch spacing and layer thickness have contributed more in the porous part’s strength than scan speed. The accuracy of the order of IT16 has been found for all functional dimensions. Cell growth and proliferation confirmed biocompatibility of polyamide (PA-2200) for scaffold applications. Originality/value This paper demonstrates the biocompatibility of PA-2200 for scaffold applications. The optimized process parameters of SLS process for open cell structure having pore size 1.2 × 1.2 mm2 with strut diameter of 1 mm have been obtained. The accuracy of the order of IT16 was obtained at the optimized process factors.


RSC Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 5912-5919 ◽  
Author(s):  
Weizhong Yuan ◽  
Xiangnan Chen ◽  
Yifan Xu ◽  
Chuan Yan ◽  
Yang Liu ◽  
...  

The macroporous material PHIPE–PGMA–TETA/Au NPs has an open-cell and porous structure, and can effectively catalyze the reduction of 4-nitrophenol.


2016 ◽  
Vol 846 ◽  
pp. 37-41
Author(s):  
Razmi Noh Mohd Razali ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Norhamidi Muhamad

In this work, aluminium foams with modified geometry were successfully fabricated with a combination of dense and porous structure The main objective of this study were to determine the initial physical properties of aluminium foam with modified geometry in terms of density, porosity and morphology. Three different NaCl space holder sizes ranging from 1 mm to 3 mm were sieved and used to replicate the final pore size of aluminium foam. The samples were successfully produced through casting replication process. After densification, samples underwent water leaching in ultrasonic bath to remove completely the space holder. Results showed that porosity of the aluminium foam increased from 50 – 62% when the size of space holder was increased from 1 mm to 3 mm. The morphology showed clearly an integrated modified geometry between dense and inter-connected porous structure which is beneficial for applications that require combination properties of structural, thermal and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document