scholarly journals Preparation and recyclable catalysis performance of functional macroporous polyHIPE immobilized with gold nanoparticles on its surface

RSC Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 5912-5919 ◽  
Author(s):  
Weizhong Yuan ◽  
Xiangnan Chen ◽  
Yifan Xu ◽  
Chuan Yan ◽  
Yang Liu ◽  
...  

The macroporous material PHIPE–PGMA–TETA/Au NPs has an open-cell and porous structure, and can effectively catalyze the reduction of 4-nitrophenol.

2021 ◽  
Author(s):  
Salvatore Moschetto ◽  
Andrea Ienco ◽  
Gabriele Manca ◽  
Manuel Serrano-Ruiz ◽  
Maurizio Peruzzini ◽  
...  

Heterostructures of single- and few-layer black phosphorus (2D bP) functionalized with gold nanoparticles (Au NPs) have been recently reported in the literature, exploiting their intriguing properties and biocompatibility for catalytic,...


Author(s):  
Lihao Tian ◽  
Lin Lu ◽  
Weikai Chen ◽  
Yang Xia ◽  
Charlie C. L. Wang ◽  
...  

Author(s):  
Spyridon Damilos ◽  
Ioannis Alissandratos ◽  
Luca Panariello ◽  
Anand N. P. Radhakrishnan ◽  
Enhong Cao ◽  
...  

AbstractA continuous manufacturing platform was developed for the synthesis of aqueous colloidal 10–20 nm gold nanoparticles (Au NPs) in a flow reactor using chloroauric acid, sodium citrate and citric acid at 95 oC and 2.3 bar(a) pressure. The use of a two-phase flow system – using heptane as the continuous phase – prevented fouling on the reactor walls, while improving the residence time distribution. Continuous syntheses for up to 2 h demonstrated its potential application for continuous manufacturing, while live quality control was established using online UV-Vis photospectrometry that monitored the particle size and process yield. The synthesis was stable and reproducible over time for gold precursor concentration above 0.23 mM (after mixing), resulting in average particle size between 12 and 15 nm. A hydrophobic membrane separator provided successful separation of the aqueous and organic phases and collection of colloidal Au NPs in flow. Process yield increased at higher inlet flow rates (from 70 % to almost 100 %), due to lower residence time of the colloidal solution in the separator resulting in less fouling in the PTFE membrane. This study addresses the challenges for the translation of the synthesis from batch to flow and provides tools for the development of a continuous manufacturing platform for gold nanoparticles.Graphical abstract


Nanoscale ◽  
2021 ◽  
Author(s):  
Lixiang Xing ◽  
Cui Wang ◽  
Yi Cao ◽  
Jihui Zhang ◽  
Haibing Xia

In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of...


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2937
Author(s):  
Muhammad Zulfajri ◽  
Wei-Jie Huang ◽  
Genin-Gary Huang ◽  
Hui-Fen Chen

The laser ablation synthesis in solution (LASiS) method has been widely utilized due to its significant prospects in laser microprocessing of nanomaterials. In this study, the LASiS method with the addition of different surfactant charges (cationic CTAB, nonionic TX-100, and anionic SDS) was used to produce Au NPs. An Nd:YAG laser system at 532 nm excitation with some synthetic parameters, including different laser fluences, ablation times, and surfactant concentrations was performed. The obtained Au NPs were characterized by UV-Vis spectroscopy, transmission electron microscopy, and zeta potential analyzer. The Au NPs exhibited the maximum absorption peak at around 520 nm for all samples. The color of Au NPs was changed from red to reddish by increasing the laser fluence. The surfactant charges also played different roles in the Au NPs’ growth during the synthesis process. The average sizes of Au NPs were found to be 8.5 nm, 5.5 nm, and 15.5 nm with the medium containing CTAB, TX-100, and SDS, respectively. Besides, the different surfactant charges induced different performances to protect Au NPs from agglomeration. Overall, the SDS and CTAB surfactants exhibited higher stability of the Au NPs compared to the Au NPs with TX-100 surfactant.


2021 ◽  
Author(s):  
Weixue Yang ◽  
Fei Li ◽  
Huali Liu ◽  
Zhen Li ◽  
Jiaqi Zhao ◽  
...  

A photo-assisted Li−Oxygen (Li−O2) battery with Au/SnO2 (ASO) hybrid nanotubes as cathode and photocatalyst has been prepared. The localized surface plasmon resonance (LSPR) excitation of gold nanoparticles (Au NPs) can...


2018 ◽  
Vol 72 (11) ◽  
pp. 1645-1652 ◽  
Author(s):  
Kailong Dong ◽  
Jiasheng Zhou ◽  
Taiqun Yang ◽  
Shan Dai ◽  
Hao Tan ◽  
...  

In this study, we report a straightforward strategy for Hg2+ ion detection. Fluorescent Au nanoparticles (NPs) were one-pot synthesized using a polymer (polyvinyl pyrrolidone [PVP]) as both capping and fluorescence agent. The as-synthesized PVP-Au NPs showed a remarkably rapid response selectively for Hg2+ ions compared to 14 other metal ions. The detection limit of Hg2+ was estimated at 100 nM. We discuss the emission and quenching mechanism of the PVP-Au NPs, the former being attributed to metal enhanced fluorescence and the latter being related to static quenching by Hg2+. The fluorescence of PVP-Au NPs offers an efficient and reliable strategy for Hg2+ ions detection. They therefore have a great potential for applications in health and environmental monitoring.


2020 ◽  
Vol 8 (45) ◽  
pp. 16198-16203
Author(s):  
Yinfeng Long ◽  
Shuangshuang Wang ◽  
Yunxia Wang ◽  
Yan Qiao ◽  
Tao Ding

Surface plasmons enable controllable shape transformation based on the dissolution and re-deposition of gold nanoparticles (Au NPs).


2016 ◽  
Vol 6 (3) ◽  
pp. 598-601 ◽  
Author(s):  
Alberto Villa ◽  
Di Wang ◽  
Carine E. Chan-Thaw ◽  
Sebastiano Campisi ◽  
Gabriel M. Veith ◽  
...  

We demonstrate a confinement effect where gold nanoparticles trapped within N-functionalized carbon nanofibers (N-CNFs) are more active for polyol oxidation and promote selectivity towards di-acid products, whereas AuNPs trapped on the surface produce as a major by-product the one derived from C–C cleavage.


RSC Advances ◽  
2020 ◽  
Vol 10 (51) ◽  
pp. 30858-30869
Author(s):  
Phuong Que Tran Do ◽  
Vu Thi Huong ◽  
Nguyen Tran Truc Phuong ◽  
Thi-Hiep Nguyen ◽  
Hanh Kieu Thi Ta ◽  
...  

The development of improved methods for the synthesis of monodisperse gold nanoparticles (Au NPs) is of high priority because they can be used as substrates for surface-enhanced Raman scattering (SERS) applications relating to biological lipids.


Sign in / Sign up

Export Citation Format

Share Document