scholarly journals When Machine Learning Meets Privacy

2021 ◽  
Vol 54 (2) ◽  
pp. 1-36
Author(s):  
Bo Liu ◽  
Ming Ding ◽  
Sina Shaham ◽  
Wenny Rahayu ◽  
Farhad Farokhi ◽  
...  

The newly emerged machine learning (e.g., deep learning) methods have become a strong driving force to revolutionize a wide range of industries, such as smart healthcare, financial technology, and surveillance systems. Meanwhile, privacy has emerged as a big concern in this machine learning-based artificial intelligence era. It is important to note that the problem of privacy preservation in the context of machine learning is quite different from that in traditional data privacy protection, as machine learning can act as both friend and foe. Currently, the work on the preservation of privacy and machine learning are still in an infancy stage, as most existing solutions only focus on privacy problems during the machine learning process. Therefore, a comprehensive study on the privacy preservation problems and machine learning is required. This article surveys the state of the art in privacy issues and solutions for machine learning. The survey covers three categories of interactions between privacy and machine learning: (i) private machine learning, (ii) machine learning-aided privacy protection, and (iii) machine learning-based privacy attack and corresponding protection schemes. The current research progress in each category is reviewed and the key challenges are identified. Finally, based on our in-depth analysis of the area of privacy and machine learning, we point out future research directions in this field.

2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 460
Author(s):  
Samuel Yen-Chi Chen ◽  
Shinjae Yoo

Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. One of the potential schemes to achieve this property is the federated learning (FL), which consists of several clients or local nodes learning on their own data and a central node to aggregate the models collected from those local nodes. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032059
Author(s):  
Qiang Chen ◽  
Meiling Deng

Abstract Regression algorithms are commonly used in machine learning. Based on encryption and privacy protection methods, the current key hot technology regression algorithm and the same encryption technology are studied. This paper proposes a PPLAR based algorithm. The correlation between data items is obtained by logistic regression formula. The algorithm is distributed and parallelized on Hadoop platform to improve the computing speed of the cluster while ensuring the average absolute error of the algorithm.


2019 ◽  
Vol 23 (1) ◽  
pp. 421-452 ◽  
Author(s):  
Yongfeng Wang ◽  
Zheng Yan ◽  
Wei Feng ◽  
Shushu Liu

AbstractThe unprecedented proliferation of mobile smart devices has propelled a promising computing paradigm, Mobile Crowd Sensing (MCS), where people share surrounding insight or personal data with others. As a fast, easy, and cost-effective way to address large-scale societal problems, MCS is widely applied into many fields, e.g., environment monitoring, map construction, public safety, etc. Despite the popularity, the risk of sensitive information disclosure in MCS poses a serious threat to the participants and limits its further development in privacy-sensitive fields. Thus, the research on privacy protection in MCS becomes important and urgent. This paper targets the privacy issues of MCS and conducts a comprehensive literature research on it by providing a thorough survey. We first introduce a typical system structure of MCS, summarize its characteristics, propose essential requirements on privacy on the basis of a threat model. Then, we survey existing solutions on privacy protection and evaluate their performances by employing the proposed requirements. In essence, we classify the privacy protection schemes into four categories with regard to identity privacy, data privacy, attribute privacy, and task privacy. Besides, we review the achievements on privacy-preserving incentives in MCS from four viewpoints of incentive measures: credit incentive, auction incentive, currency incentive, and reputation incentive. Finally, we point out some open issues and propose future research directions based on the findings from our survey.


2020 ◽  
Author(s):  
Vui Huang Tea

The 3rd Generation Partnership Project (3GPP) standard for 5G telecommunications specifies privacy protection schemes to cryptographically encrypt and conceal permanent identifiers of subscribers to prevent them from being exposed and tracked by over-the-air eavesdroppers. However, conventional privacy-preserving protocols and architectures alone are insufficient to protect subscriber privacy as they are vulnerable to new types of attacks due to the utilization of the emerging technologies such artificial intelligence (AI). A conventional brute force attack to unmask concealed 5G identity using a CPU would require ~877 million years. This paper presents an apparatus using machine learning (ML) and a graphics processing unit (GPU) that is able to unmask a concealed 5G identity in ~12 minutes with an untrained neural-network, or ~0.015 milliseconds with a pre-trained neural-network. The 5G concealed identities are effectively identified without requiring decryption, hence severely diminishing the level of privacy-preservation. Finally, several ML defence countermeasures are proposed to re-establish privacy protection in 5G identity.


Author(s):  
Rajendra Akerkar

A wide range of smart mobility technologies are being deployed within urban environment. These technologies generate huge quantities of data, much of them in real-time and at a highly granular scale. Such data about mobility, transport, and citizens can be put to many beneficial uses and, if shared, for uses beyond the system and purposes for which they were generated. Jointly, these data create the evidence base to run mobility services more efficiently, effectively, and sustainably. However, generating, processing, analyzing, sharing, and storing vast amounts of actionable data also raises several concerns and challenges. For example, data privacy, data protection, and data security issues arise from the creation of smart mobility. This chapter highlights the various privacy and security concerns and harms related to the deployment and use of smart mobility technologies and initiatives, and makes suggestions for addressing apprehensions about and harms arising from data privacy, protection, and security issues.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2020 ◽  
Author(s):  
Sina F. Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Abstract Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to susceptible-infected-recovered (SIR) and susceptible-exposed-infectious-recovered (SEIR) models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


2020 ◽  
Author(s):  
Sina Faizollahzadeh Ardabili ◽  
Amir Mosavi ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
Annamaria R. Varkonyi-Koczy ◽  
...  

: Several outbreak prediction models for COVID-19 are being used by officials around the world to make informed-decisions and enforce relevant control measures. Among the standard models for COVID-19 global pandemic prediction, simple epidemiological and statistical models have received more attention by authorities, and they are popular in the media. Due to a high level of uncertainty and lack of essential data, standard models have shown low accuracy for long-term prediction. Although the literature includes several attempts to address this issue, the essential generalization and robustness abilities of existing models needs to be improved. This paper presents a comparative analysis of machine learning and soft computing models to predict the COVID-19 outbreak as an alternative to SIR and SEIR models. Among a wide range of machine learning models investigated, two models showed promising results (i.e., multi-layered perceptron, MLP, and adaptive network-based fuzzy inference system, ANFIS). Based on the results reported here, and due to the highly complex nature of the COVID-19 outbreak and variation in its behavior from nation-to-nation, this study suggests machine learning as an effective tool to model the outbreak. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research. Paper further suggests that real novelty in outbreak prediction can be realized through integrating machine learning and SEIR models.


Sign in / Sign up

Export Citation Format

Share Document