ColorfulFeedback: Enhancing Interest Prediction Performance through Multi-dimensional Labeled Feedback from Users

Author(s):  
Yuki Maeda ◽  
Shuji Yamaguchi ◽  
Tatsuru Higurashi ◽  
Kota Tsubouchi
Author(s):  
Fatma-Elzahraa Eid ◽  
Haitham Elmarakeby ◽  
Yujia Alina Chan ◽  
Nadine Fornelos Martins ◽  
Mahmoud ElHefnawi ◽  
...  

AbstractRepresentational biases that are common in biological data can inflate prediction performance and confound our understanding of how and what machine learning (ML) models learn from large complicated datasets. However, auditing for these biases is not a common practice in ML in the life sciences. Here, we devise a systematic auditing framework and harness it to audit three different ML applications of significant therapeutic interest: prediction frameworks of protein-protein interactions, drug-target bioactivity, and MHC-peptide binding. Through this, we identify unrecognized biases that hinder the ML process and result in low model generalizability. Ultimately, we show that, when there is insufficient signal in the training data, ML models are likely to learn primarily from representational biases.


2021 ◽  
Vol 15 (2) ◽  
pp. 1-25
Author(s):  
Jifeng Zhang ◽  
Wenjun Jiang ◽  
Jinrui Zhang ◽  
Jie Wu ◽  
Guojun Wang

Event-based social networks (EBSNs) connect online and offline lives. They allow online users with similar interests to get together in real life. Attendance prediction for activities in EBSNs has attracted a lot of attention and several factors have been studied. However, the prediction accuracy is not very good for some special activities, such as outdoor activities. Moreover, a very important factor, the weather, has not been well exploited. In this work, we strive to understand how the weather factor impacts activity attendance, and we explore it to improve attendance prediction from the organizer’s view. First, we classify activities into two categories: the outdoor and the indoor activities. We study the different ways that weather factors may impact these two kinds of activities. We also introduce a new factor of event duration. By integrating the above factors with user interest and user-event distance, we build a model of attendance prediction with the weather named GBT-W , based on the Gradient Boosting Tree. Furthermore, we develop a platform to help event organizers estimate the possible number of activity attendance with different settings (e.g., different weather, location) to effectively plan their events. We conduct extensive experiments, and the results show that our method has a better prediction performance on both the outdoor and the indoor activities, which validates the reasonability of considering weather and duration.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4068
Author(s):  
Xu Huang ◽  
Mirna Wasouf ◽  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Cracks typically develop in concrete due to shrinkage, loading actions, and weather conditions; and may occur anytime in its life span. Autogenous healing concrete is a type of self-healing concrete that can automatically heal cracks based on physical or chemical reactions in concrete matrix. It is imperative to investigate the healing performance that autogenous healing concrete possesses, to assess the extent of the cracking and to predict the extent of healing. In the research of self-healing concrete, testing the healing performance of concrete in a laboratory is costly, and a mass of instances may be needed to explore reliable concrete design. This study is thus the world’s first to establish six types of machine learning algorithms, which are capable of predicting the healing performance (HP) of self-healing concrete. These algorithms involve an artificial neural network (ANN), a k-nearest neighbours (kNN), a gradient boosting regression (GBR), a decision tree regression (DTR), a support vector regression (SVR) and a random forest (RF). Parameters of these algorithms are tuned utilising grid search algorithm (GSA) and genetic algorithm (GA). The prediction performance indicated by coefficient of determination (R2) and root mean square error (RMSE) measures of these algorithms are evaluated on the basis of 1417 data sets from the open literature. The results show that GSA-GBR performs higher prediction performance (R2GSA-GBR = 0.958) and stronger robustness (RMSEGSA-GBR = 0.202) than the other five types of algorithms employed to predict the healing performance of autogenous healing concrete. Therefore, reliable prediction accuracy of the healing performance and efficient assistance on the design of autogenous healing concrete can be achieved.


Sign in / Sign up

Export Citation Format

Share Document