Transactions in the Era of Non Volatile Memory and Heterogeneous Memory Architectures

Author(s):  
Paolo Romano
PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257047
Author(s):  
Adrián Lamela ◽  
Óscar G. Ossorio ◽  
Guillermo Vinuesa ◽  
Benjamín Sahelices

Non-volatile memory technology is now available in commodity hardware. This technology can be used as a backup memory for an external dram cache memory without needing to modify the software. However, the higher read and write latencies of non-volatile memory may exacerbate the memory wall problem. In this work we present a novel off-chip prefetch technique based on a Hidden Markov Model that specifically deals with the latency problem caused by complexity of off-chip memory access patterns. Firstly, we present a thorough analysis of off-chip memory access patterns to identify its complexity in multicore processors. Based on this study, we propose a prefetching module located in the llc which uses two small tables, and where the computational complexity of which is linear with the number of computing threads. Our Markov-based technique is able to keep track and make clustering of several simultaneous groups of memory accesses coming from multiple simultaneous threads in a multicore processor. It can quickly identify complex address groups and trigger prefetch with very high accuracy. Our simulations show an improvement of up to 76% in the hit ratio of an off-chip dram cache for multicore architecture over the conventional prefetch technique (g/dc). Also, the overhead of prefetch requests (failed prefetches) is reduced by 48% in single core simulations and by 83% in multicore simulations.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-23
Author(s):  
Mario Günzel ◽  
Christian Hakert ◽  
Kuan-Hsun Chen ◽  
Jian-Jia Chen

Dynamic power management (DPM) reduces the power consumption of a computing system when it idles, by switching the system into a low power state for hibernation. When all processors in the system share the same component, e.g., a shared memory, powering off this component during hibernation is only possible when all processors idle at the same time. For a real-time system, the schedulability property has to be guaranteed on every processor, especially if idle intervals are considered to be actively introduced. In this work, we consider real-time systems with hybrid shared-memory architectures, which consist of shared volatile memory (VM) and non-volatile memory (NVM). Energy-efficient execution is achieved by applying DPM to turn off all memories during the hibernation mode. Towards this, we first explore the hybrid memory architectures and suggest a task model, which features configurable hibernation overheads. We propose a multi-processor procrastination algorithm (HEART), based on partitioned earliest-deadline-first (pEDF) scheduling. Our algorithm facilitates reducing the energy consumption by actively enlarging the hibernation time. It enforces all processors to idle simultaneously without violating the schedulability condition, such that the system can enter the hibernation state, where shared memories are turned off. Throughout extensive evaluation of HEART, we demonstrate (1) the increase in potential hibernation time, respectively the decrease in energy consumption, and (2) that our algorithm is not only more general but also has better performance than the state of the art with respect to energy efficiency in most cases.


Author(s):  
Masashi TAWADA ◽  
Shinji KIMURA ◽  
Masao YANAGISAWA ◽  
Nozomu TOGAWA

2016 ◽  
Vol 213 (9) ◽  
pp. 2446-2451 ◽  
Author(s):  
Klemens Ilse ◽  
Thomas Schneider ◽  
Johannes Ziegler ◽  
Alexander Sprafke ◽  
Ralf B. Wehrspohn

Author(s):  
Franz-Josef Streit ◽  
Florian Fritz ◽  
Andreas Becher ◽  
Stefan Wildermann ◽  
Stefan Werner ◽  
...  

2021 ◽  
Vol 2 ◽  
pp. 31-40
Author(s):  
Jiang Li ◽  
Yijun Cui ◽  
Chongyan Gu ◽  
Chenghua Wang ◽  
Weiqiang Liu ◽  
...  

2021 ◽  
Vol 15 (5) ◽  
Author(s):  
Haitao Wang ◽  
Zhanhuai Li ◽  
Xiao Zhang ◽  
Xiaonan Zhao ◽  
Song Jiang

AIP Advances ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 125124
Author(s):  
Xinyi Zhu ◽  
Longfei He ◽  
Yafen Yang ◽  
Kai Zhang ◽  
Hao Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document