An Analysis on the Feasibility of a Low-cost Fall Detection System

Author(s):  
Samuel Caryabudi ◽  
Atar Fuady Babgei ◽  
Achmad Arifin
Author(s):  
Sudhindra F ◽  
◽  
Annarao S.J ◽  
Vani R. M ◽  
P.V Hunagund

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Francy Shu ◽  
Jeff Shu

AbstractFalls are a leading cause of unintentional injuries and can result in devastating disabilities and fatalities when left undetected and not treated in time. Current detection methods have one or more of the following problems: frequent battery replacements, wearer discomfort, high costs, complicated setup, furniture occlusion, and intensive computation. In fact, all non-wearable methods fail to detect falls beyond ten meters. Here, we design a house-wide fall detection system capable of detecting stumbling, slipping, fainting, and various other types of falls at 60 m and beyond, including through transparent glasses, screens, and rain. By analyzing the fall pattern using machine learning and crafted rules via a local, low-cost single-board computer, true falls can be differentiated from daily activities and monitored through conventionally available surveillance systems. Either a multi-camera setup in one room or single cameras installed at high altitudes can avoid occlusion. This system’s flexibility enables a wide-coverage set-up, ensuring safety in senior homes, rehab centers, and nursing facilities. It can also be configured into high-precision and high-recall application to capture every single fall in high-risk zones.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4335
Author(s):  
Goran Šeketa ◽  
Lovro Pavlaković ◽  
Dominik Džaja ◽  
Igor Lacković ◽  
Ratko Magjarević

Automatic fall detection systems ensure that elderly people get prompt assistance after experiencing a fall. Fall detection systems based on accelerometer measurements are widely used because of their portability and low cost. However, the ability of these systems to differentiate falls from Activities of Daily Living (ADL) is still not acceptable for everyday usage at a large scale. More work is still needed to raise the performance of these systems. In our research, we explored an essential but often neglected part of accelerometer-based fall detection systems—data segmentation. The aim of our work was to explore how different configurations of windows for data segmentation affect detection accuracy of a fall detection system and to find the best-performing configuration. For this purpose, we designed a testing environment for fall detection based on a Support Vector Machine (SVM) classifier and evaluated the influence of the number and duration of segmentation windows on the overall detection accuracy. Thereby, an event-centered approach for data segmentation was used, where windows are set relative to a potential fall event detected in the input data. Fall and ADL data records from three publicly available datasets were utilized for the test. We found that a configuration of three sequential windows (pre-impact, impact, and post-impact) provided the highest detection accuracy on all three datasets. The best results were obtained when either a 0.5 s or a 1 s long impact window was used, combined with pre- and post-impact windows of 3.5 s or 3.75 s.


Author(s):  
Mohammed Faeik Ruzaij Al-Okby ◽  
Kerstin Thurow

Fall detection systems for the elderly are very important to protect this type of users. The early detection of the fall of the elderly has a major impact on saving their lives and avoiding the deterioration of the negative medical effects resulting from the effect of the patient falling on a hard surface. One of the constraints in fall detection systems are false-negative errors (no fall detection) or false-positive errors (sending a false warning without real fall accident). These errors have to be reduced significantly. In this paper, an innovative method to reduce fall detection system errors is proposed. The system consists of two orientation detection sensors to track the body orientation instead of using a single sensor in the previous systems which enhances the system accuracy and reduces the false-negative and false-positive errors. The system uses a small size IoT-based controller to process the sensor's information and make the alarm decision based on specific thresholds. The output alarm of the system includes an email sent to the caregivers via the embedded Wi-Fi ESP8266 module as well as an SMS message to the caregivers’ phones via GSM modules to ensure that the alarm message arrives in the absence of internet coverage for the patient or the caregiver. The system is powered by a small lithium-Ion battery. All sensors and modules of the system are combined in a small rubber box that can be fixed in a waist belt or the chest rejoin of the user body. Several tests have been made in different procedures. The tests revealed that the new approach improves the accuracy of the system and reduces the possibility of triggering wrong alarms.


2011 ◽  
Vol 131 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Takuya Tajima ◽  
Takehiko Abe ◽  
Haruhiko Kimura

Author(s):  
Sagar Chhetri ◽  
Abeer Alsadoon ◽  
Thair Al‐Dala'in ◽  
P. W. C. Prasad ◽  
Tarik A. Rashid ◽  
...  

2017 ◽  
Vol 34 ◽  
pp. 3-13 ◽  
Author(s):  
Miguel Ángel Álvarez de la Concepción ◽  
Luis Miguel Soria Morillo ◽  
Juan Antonio Álvarez García ◽  
Luis González-Abril

Sign in / Sign up

Export Citation Format

Share Document