scholarly journals Exposing Vulnerabilities of Deepfake Detection Systems with Robust Attacks

Author(s):  
Shehzeen Hussain ◽  
Paarth Neekhara ◽  
Brian Dolhansky ◽  
Joanna Bitton ◽  
Cristian Canton Ferrer ◽  
...  

Recent advances in video manipulation techniques have made the generation of fake videos more accessible than ever before. Manipulated videos can fuel disinformation and reduce trust in media. Therefore detection of fake videos has garnered immense interest in academia and industry. Recently developed Deepfake detection methods rely on Deep Neural Networks (DNNs) to distinguish AI-generated fake videos from real videos. In this work, we demonstrate that it is possible to bypass such detectors by adversarially modifying fake videos synthesized using existing Deepfake generation methods. We further demonstrate that our adversarial perturbations are robust to image and video compression codecs, making them a real-world threat. We present pipelines in both white-box and black-box attack scenarios that can fool DNN based Deepfake detectors into classifying fake videos as real. Finally, we study the extent to which adversarial perturbations transfer across different Deepfake detectors and create more accessible attacks using universal adversarial perturbations that pose a very feasible attack scenario since they can be easily shared amongst attackers.

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5323
Author(s):  
Yongsu Kim ◽  
Hyoeun Kang ◽  
Naufal Suryanto ◽  
Harashta Tatimma Tatimma Larasati ◽  
Afifatul Mukaroh ◽  
...  

Deep neural networks (DNNs), especially those used in computer vision, are highly vulnerable to adversarial attacks, such as adversarial perturbations and adversarial patches. Adversarial patches, often considered more appropriate for a real-world attack, are attached to the target object or its surroundings to deceive the target system. However, most previous research employed adversarial patches that are conspicuous to human vision, making them easy to identify and counter. Previously, the spatially localized perturbation GAN (SLP-GAN) was proposed, in which the perturbation was only added to the most representative area of the input images, creating a spatially localized adversarial camouflage patch that excels in terms of visual fidelity and is, therefore, difficult to detect by human vision. In this study, the use of the method called eSLP-GAN was extended to deceive classifiers and object detection systems. Specifically, the loss function was modified for greater compatibility with an object-detection model attack and to increase robustness in the real world. Furthermore, the applicability of the proposed method was tested on the CARLA simulator for a more authentic real-world attack scenario.


2020 ◽  
Vol 34 (07) ◽  
pp. 10901-10908 ◽  
Author(s):  
Abdullah Hamdi ◽  
Matthias Mueller ◽  
Bernard Ghanem

One major factor impeding more widespread adoption of deep neural networks (DNNs) is their lack of robustness, which is essential for safety-critical applications such as autonomous driving. This has motivated much recent work on adversarial attacks for DNNs, which mostly focus on pixel-level perturbations void of semantic meaning. In contrast, we present a general framework for adversarial attacks on trained agents, which covers semantic perturbations to the environment of the agent performing the task as well as pixel-level attacks. To do this, we re-frame the adversarial attack problem as learning a distribution of parameters that always fools the agent. In the semantic case, our proposed adversary (denoted as BBGAN) is trained to sample parameters that describe the environment with which the black-box agent interacts, such that the agent performs its dedicated task poorly in this environment. We apply BBGAN on three different tasks, primarily targeting aspects of autonomous navigation: object detection, self-driving, and autonomous UAV racing. On these tasks, BBGAN can generate failure cases that consistently fool a trained agent.


2021 ◽  
Author(s):  
Chih-Kuan Yeh ◽  
Been Kim ◽  
Pradeep Ravikumar

Understanding complex machine learning models such as deep neural networks with explanations is crucial in various applications. Many explanations stem from the model perspective, and may not necessarily effectively communicate why the model is making its predictions at the right level of abstraction. For example, providing importance weights to individual pixels in an image can only express which parts of that particular image is important to the model, but humans may prefer an explanation which explains the prediction by concept-based thinking. In this work, we review the emerging area of concept based explanations. We start by introducing concept explanations including the class of Concept Activation Vectors (CAV) which characterize concepts using vectors in appropriate spaces of neural activations, and discuss different properties of useful concepts, and approaches to measure the usefulness of concept vectors. We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats. Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.


Sign in / Sign up

Export Citation Format

Share Document