scholarly journals Improved Bounds on Fourier Entropy and Min-entropy

2021 ◽  
Vol 13 (4) ◽  
pp. 1-40
Author(s):  
Srinivasan Arunachalam ◽  
Sourav Chakraborty ◽  
Michal Koucký ◽  
Nitin Saurabh ◽  
Ronald De Wolf

Given a Boolean function f:{ -1,1} ^{n}→ { -1,1, define the Fourier distribution to be the distribution on subsets of [n], where each S ⊆ [n] is sampled with probability f ˆ (S) 2 . The Fourier Entropy-influence (FEI) conjecture of Friedgut and Kalai [28] seeks to relate two fundamental measures associated with the Fourier distribution: does there exist a universal constant C > 0 such that H(f ˆ2 ) ≤ C ⋅ Inf (f), where H (fˆ2) is the Shannon entropy of the Fourier distribution of f and Inf(f) is the total influence of f In this article, we present three new contributions toward the FEI conjecture: (1) Our first contribution shows that H(f ˆ2 ) ≤ 2 ⋅ aUC ⊕ (f), where aUC ⊕ (f) is the average unambiguous parity-certificate complexity of f . This improves upon several bounds shown by Chakraborty et al. [20]. We further improve this bound for unambiguous DNFs. We also discuss how our work makes Mansour's conjecture for DNFs a natural next step toward resolution of the FEI conjecture. (2) We next consider the weaker Fourier Min-entropy-influence (FMEI) conjecture posed by O'Donnell and others [50, 53], which asks if H ∞ fˆ2) ≤ C ⋅ Inf(f), where H ∞ fˆ2) is the min-entropy of the Fourier distribution. We show H ∞ (fˆ2) ≤ 2⋅C min ⊕ (f), where C min ⊕ (f) is the minimum parity-certificate complexity of f . We also show that for all ε≥0, we have H ∞ (fˆ2) ≤2 log⁡(∥f ˆ ∥1,ε/(1−ε)), where ∥f ˆ ∥1,ε is the approximate spectral norm of f . As a corollary, we verify the FMEI conjecture for the class of read- k DNFs (for constant  k ). (3) Our third contribution is to better understand implications of the FEI conjecture for the structure of polynomials that 1/3-approximate a Boolean function on the Boolean cube. We pose a conjecture: no flat polynomial (whose non-zero Fourier coefficients have the same magnitude) of degree d and sparsity 2 ω(d) can 1/3-approximate a Boolean function. This conjecture is known to be true assuming FEI, and we prove the conjecture unconditionally (i.e., without assuming the FEI conjecture) for a class of polynomials. We discuss an intriguing connection between our conjecture and the constant for the Bohnenblust-Hille inequality, which has been extensively studied in functional analysis.

2019 ◽  
Vol 29 (5) ◽  
pp. 321-333
Author(s):  
Kirill A. Popkov

Abstract The following results are proved: any nonconstant Boolean function may be implemented by an irredundant circuit of gates in the basis {x& y, x, x ⊕ y ⊕ z} admitting a single fault detection test of length at most 2 with respect to arbitrary stuck-at faults at outputs of gates, there exists a six-place Boolean function ψ such that any nonconstant Boolean function may be implemented by an irredundant circuit of gates in the basis {ψ} admitting a single diagnostic test of length at most 3 with respect to arbitrary stuck-at faults at outputs of gates.


2019 ◽  
Vol 29 (1) ◽  
pp. 35-48
Author(s):  
Dmitry S. Romanov ◽  
Elena Yu. Romanova

Abstract A constructive proof is given that in each of the bases B′ = {x&y, x⊕y, x ∼ y}, B1 = {x&y, x⊕y, 1} any n-place Boolean function may be implemented: by an irredundant combinational circuit with n inputs and one output admitting (under single stuck-at faults at inputs and outputs of gates) a single fault detection test of length at most 16, by an irredundant combinational circuit with n inputs and one output admitting (under single stuck-at faults at inputs and outputs of gates and at primary inputs) a single fault detection test of length at most 2n−2log2 n+O(1); besides, there exists an n-place function that cannot be implemented by an irredundant circuit admitting a detecting test whose length is smaller than 2n−2log2 n − Ω(1), by an irredundant combinational circuit with n inputs and three outputs admitting (under single stuck-at faults at inputs and outputs of gates and at primary inputs) a single fault detection test of length at most 17.


2020 ◽  
Author(s):  
Jessica Kehrer ◽  
Dominik Ricken ◽  
Leanne Strauss ◽  
Emma Pietsch ◽  
Julia M. Heinze ◽  
...  

AbstractTransmission of the malaria parasite Plasmodium to mosquitoes necessitates gamete egress from red blood cells to allow zygote formation and ookinete motility to enable penetration of the midgut epithelium. Both processes are dependent on the secretion of proteins from distinct sets of specialized vesicles. Inhibiting some of these proteins has shown potential for blocking parasite transmission to the mosquito. To identify new transmission blocking vaccine candidates, we defined the microneme content from ookinetes of the rodent model organism Plasmodium berghei using APEX2-mediated rapid proximity-dependent biotinylation. Besides known proteins of ookinete micronemes, this identified over 50 novel candidates and sharpened the list of a previous survey based on subcellular fractionation. Functional analysis of a first candidate uncovered a dual role for this membrane protein in male gametogenesis and ookinete midgut traversal. Mutation of a putative trafficking motif in the C-terminus led to its mis-localization in ookinetes and affected ookinete to oocyst transition but not gamete formation. This suggests the existence of distinct functional and transport requirements for Plasmodium proteins in different parasite stages.SignificanceThe genome of the malaria parasite Plasmodium contains over 5500 genes, of which over 30% have no assigned function. Transmission of Plasmodium spp. to the mosquito contains several essential steps that can be inhibited by antibodies or chemical compounds. Yet few proteins involved in these processes are characterized, thus limiting our capacity to generate transmission interfering tools. Here, we establish a method to rapidly identify proteins in a specific compartment within the parasite that is essential for establishment of an infection within the mosquito, and identify over 50 novel candidate proteins. Functional analysis of the top candidate identifies a protein with two independent essential functions in subsequent steps along the Plasmodium life cycle within the mosquito.Highlightsfirst use of APEX based proximity ligation in Apicomplexaidentification of >50 putative ookinete surface proteinsnovel membrane protein essential for microgamete egress and ookinete migrationputative trafficking motif essential in ookinetes but not gametes


2019 ◽  
Vol 29 (2) ◽  
pp. 200-212
Author(s):  
Yuval Filmus

AbstractThe Friedgut–Kalai–Naor (FKN) theorem states that if ƒ is a Boolean function on the Boolean cube which is close to degree one, then ƒ is close to a dictator, a function depending on a single coordinate. The author has extended the theorem to the slice, the subset of the Boolean cube consisting of all vectors with fixed Hamming weight. We extend the theorem further, to the multislice, a multicoloured version of the slice.As an application, we prove a stability version of the edge-isoperimetric inequality for settings of parameters in which the optimal set is a dictator.


2017 ◽  
Author(s):  
Francisco J. Enguita

ABSTRACTmiRNAs are small non-coding RNAs, that act as negative regulators of the genomic output. Their intrinsic importance within cell biology and human disease is well known. Their mechanism of action based on the base pairing binding to their cognate targets, have helped the development of many computer applications for the prediction of miRNA target recognition. More recently, many other computer applications have appeared with the objective of studying miRNA roles in many contexts, trying to dissect and predict their functions in a specific biological process. Learning about miRNA function needs a practical training in the use of specific computer and web-based applications that are complementary to the wet-lab studies. In the last seven years we have been involved in the organization of advanced training courses about thein silicofunctional analysis of miRNAs and non-coding RNAs, for students ranging from the postgraduate to the post-doctoral level. In order to guide the learning process about miRNAs, we have created miRNAtools (http://mirnatools.eu), a web repository of miRNA tools and tutorials. This page is a compilation of tools to analyze miRNAs and their regulatory action that intends to collect and organize the information that is dispersed in the web. The miRNAtools webpage is completed by a collection of tutorials that can be used by students and tutors engaged in advanced training courses. The tutorials follow the rationale of the analysis of the function of selected miRNAs, starting from their nomenclature and genomic localization and finishing by assessing their involvement in specific cellular functions.DESCRIPTION OF THE AUTHORFrancisco J. Enguita is assistant professor at the Faculty of Medicine, University of Lisbon and senior investigator at the Instituto de Medicina Molecular within the same University.KEY POINTS- We have designed a web-page, mIRNAtools3 (http://mirnatools.eu) specifically devoted for advanced teaching purposes within the miRNA field.- The webpage constitutes also a repository of web-tools for the analysis of miRNA function in several contexts.- The webpage contains tutorials that cover many aspects related with miRNAs including nomenclature, target prediction and validation, and functional analysis.


2018 ◽  
Vol 167 (02) ◽  
pp. 335-344 ◽  
Author(s):  
TOM SANDERS

AbstractWe show that if f is a Boolean function on F2n with spectral norm at most M then there is some L ≤ exp(M3+o(1)) and subspaces V1,. . .,VL such that f = Σi ± 1Vi.


Algorithmica ◽  
2019 ◽  
Vol 82 (3) ◽  
pp. 429-508
Author(s):  
Clemens Heuberger ◽  
Daniel Krenn

Abstract In this article, q-regular sequences in the sense of Allouche and Shallit are analysed asymptotically. It is shown that the summatory function of a regular sequence can asymptotically be decomposed as a finite sum of periodic fluctuations multiplied by a scaling factor. Each of these terms corresponds to an eigenvalue of the sum of matrices of a linear representation of the sequence; only the eigenvalues of absolute value larger than the joint spectral radius of the matrices contribute terms which grow faster than the error term. The paper has a particular focus on the Fourier coefficients of the periodic fluctuations: they are expressed as residues of the corresponding Dirichlet generating function. This makes it possible to compute them in an efficient way. The asymptotic analysis deals with Mellin–Perron summations and uses two arguments to overcome convergence issues, namely Hölder regularity of the fluctuations together with a pseudo-Tauberian argument. Apart from the very general result, three examples are discussed in more detail:sequences defined as the sum of outputs written by a transducer when reading a q-ary expansion of the input;the amount of esthetic numbers in the first N natural numbers; andthe number of odd entries in the rows of Pascal’s rhombus. For these examples, very precise asymptotic formulæ are presented. In the latter two examples, prior to this analysis only rough estimates were known.


Tempo ◽  
1995 ◽  
pp. 29-36
Keyword(s):  

Volume I of Messiaen's ‘Traite’, ‘Music and Color’, and organ recordings Christopher DingleRobert Craft's Stravinsky memoirs and recordings Rodney Lister


1982 ◽  
Vol 99 ◽  
pp. 605-613
Author(s):  
P. S. Conti

Conti: One of the main conclusions of the Wolf-Rayet symposium in Buenos Aires was that Wolf-Rayet stars are evolutionary products of massive objects. Some questions:–Do hot helium-rich stars, that are not Wolf-Rayet stars, exist?–What about the stability of helium rich stars of large mass? We know a helium rich star of ∼40 MO. Has the stability something to do with the wind?–Ring nebulae and bubbles : this seems to be a much more common phenomenon than we thought of some years age.–What is the origin of the subtypes? This is important to find a possible matching of scenarios to subtypes.


1994 ◽  
Vol 144 ◽  
pp. 431-434
Author(s):  
M. Minarovjech ◽  
M. Rybanský

AbstractThis paper deals with a possibility to use the ground-based method of observation in order to solve basic problems connected with the solar corona research. Namely:1.heating of the solar corona2.course of the global cycle in the corona3.rotation of the solar corona and development of active regions.There is stressed a possibility of high-time resolution of the coronal line photometer at Lomnický Peak coronal station, and use of the latter to obtain crucial observations.


Sign in / Sign up

Export Citation Format

Share Document