scholarly journals Algorithms and Lower Bounds for De Morgan Formulas of Low-Communication Leaf Gates

2021 ◽  
Vol 13 (4) ◽  
pp. 1-37
Author(s):  
Valentine Kabanets ◽  
Sajin Koroth ◽  
Zhenjian Lu ◽  
Dimitrios Myrisiotis ◽  
Igor C. Oliveira

The class FORMULA[s]∘G consists of Boolean functions computable by size- s De Morgan formulas whose leaves are any Boolean functions from a class G. We give lower bounds and (SAT, Learning, and pseudorandom generators ( PRG s )) algorithms for FORMULA[n 1.99 ]∘G, for classes G of functions with low communication complexity . Let R (k) G be the maximum k -party number-on-forehead randomized communication complexity of a function in G. Among other results, we show the following: • The Generalized Inner Product function GIP k n cannot be computed in FORMULA[s]° G on more than 1/2+ε fraction of inputs for s=o(n 2 /k⋅4 k ⋅R (k) (G)⋅log⁡(n/ε)⋅log⁡(1/ε)) 2 ). This significantly extends the lower bounds against bipartite formulas obtained by [62]. As a corollary, we get an average-case lower bound for GIP k n against FORMULA[n 1.99 ]∘PTF k −1 , i.e., sub-quadratic-size De Morgan formulas with degree-k-1) PTF ( polynomial threshold function ) gates at the bottom. Previously, it was open whether a super-linear lower bound holds for AND of PTFs. • There is a PRG of seed length n/2+O(s⋅R (2) (G)⋅log⁡(s/ε)⋅log⁡(1/ε)) that ε-fools FORMULA[s]∘G. For the special case of FORMULA[s]∘LTF, i.e., size- s formulas with LTF ( linear threshold function ) gates at the bottom, we get the better seed length O(n 1/2 ⋅s 1/4 ⋅log⁡(n)⋅log⁡(n/ε)). In particular, this provides the first non-trivial PRG (with seed length o(n)) for intersections of n halfspaces in the regime where ε≤1/n, complementing a recent result of [45]. • There exists a randomized 2 n-t #SAT algorithm for FORMULA[s]∘G, where t=Ω(n\√s⋅log 2 ⁡(s)⋅R (2) (G))/1/2. In particular, this implies a nontrivial #SAT algorithm for FORMULA[n 1.99 ]∘LTF. • The Minimum Circuit Size Problem is not in FORMULA[n 1.99 ]∘XOR; thereby making progress on hardness magnification, in connection with results from [14, 46]. On the algorithmic side, we show that the concept class FORMULA[n 1.99 ]∘XOR can be PAC-learned in time 2 O(n/log n) .

1997 ◽  
Vol 62 (3) ◽  
pp. 708-728 ◽  
Author(s):  
Maria Bonet ◽  
Toniann Pitassi ◽  
Ran Raz

AbstractWe consider small-weight Cutting Planes (CP*) proofs; that is, Cutting Planes (CP) proofs with coefficients up to Poly(n). We use the well known lower bounds for monotone complexity to prove an exponential lower bound for the length of CP* proofs, for a family of tautologies based on the clique function. Because Resolution is a special case of small-weight CP, our method also gives a new and simpler exponential lower bound for Resolution.We also prove the following two theorems: (1) Tree-like CP* proofs cannot polynomially simulate non-tree-like CP* proofs. (2) Tree-like CP* proofs and Bounded-depth-Frege proofs cannot polynomially simulate each other.Our proofs also work for some generalizations of the CP* proof system. In particular, they work for CP* with a deduction rule, and also for any proof system that allows any formula with small communication complexity, and any set of sound rules of inference.


2021 ◽  
Vol 22 (4) ◽  
pp. 1-30
Author(s):  
Sam Buss ◽  
Dmitry Itsykson ◽  
Alexander Knop ◽  
Artur Riazanov ◽  
Dmitry Sokolov

This article is motivated by seeking lower bounds on OBDD(∧, w, r) refutations, namely, OBDD refutations that allow weakening and arbitrary reorderings. We first work with 1 - NBP ∧ refutations based on read-once nondeterministic branching programs. These generalize OBDD(∧, r) refutations. There are polynomial size 1 - NBP(∧) refutations of the pigeonhole principle, hence 1-NBP(∧) is strictly stronger than OBDD}(∧, r). There are also formulas that have polynomial size tree-like resolution refutations but require exponential size 1-NBP(∧) refutations. As a corollary, OBDD}(∧, r) does not simulate tree-like resolution, answering a previously open question. The system 1-NBP(∧, ∃) uses projection inferences instead of weakening. 1-NBP(∧, ∃ k is the system restricted to projection on at most k distinct variables. We construct explicit constant degree graphs G n on n vertices and an ε > 0, such that 1-NBP(∧, ∃ ε n ) refutations of the Tseitin formula for G n require exponential size. Second, we study the proof system OBDD}(∧, w, r ℓ ), which allows ℓ different variable orders in a refutation. We prove an exponential lower bound on the complexity of tree-like OBDD(∧, w, r ℓ ) refutations for ℓ = ε log n , where n is the number of variables and ε > 0 is a constant. The lower bound is based on multiparty communication complexity.


2013 ◽  
Vol 486 ◽  
pp. 11-19 ◽  
Author(s):  
Richard Cleve ◽  
Wim van Dam ◽  
Michael Nielsen ◽  
Alain Tapp

1993 ◽  
Vol 3 (4) ◽  
Author(s):  
A.A. Irmatov

AbstractA Boolean function is called a threshold function if its truth domain is a part of the n-cube cut off by some hyperplane. The number of threshold functions of n variables P(2, n) was estimated in [1, 2, 3]. Obtaining the lower bounds is a problem of special difficulty. Using a result of the paper [4], Zuev in [3] showed that for sufficiently large nP(2, n) > 2In the present paper a new proof which gives a more precise lower bound of P(2, n) is proposed, namely, it is proved that for sufficiently large nP(2, n) > 2


1998 ◽  
Vol 5 (11) ◽  
Author(s):  
Gudmund Skovbjerg Frandsen ◽  
Johan P. Hansen ◽  
Peter Bro Miltersen

We consider dynamic evaluation of algebraic functions (matrix multiplication, determinant, convolution, Fourier transform, etc.) in the model of Reif and Tate; i.e., if f(x1, . . . , xn) = (y1, . . . , ym) is an algebraic problem, we consider serving on-line requests of the form "change input xi to value v" or "what is the value of output yi?". We present techniques for showing lower bounds on the worst case time complexity per operation for such problems. The first gives lower bounds in a wide range of rather powerful models (for instance history dependent<br />algebraic computation trees over any infinite subset of a field, the integer RAM, and the generalized real RAM model of Ben-Amram and Galil). Using this technique, we show optimal  Omega(n) bounds for dynamic matrix-vector product, dynamic matrix multiplication and dynamic discriminant and an <br />Omega(sqrt(n)) lower bound for dynamic polynomial multiplication (convolution), providing a good match with Reif and<br />Tate's O(sqrt(n log n)) upper bound. We also show linear lower bounds for dynamic determinant, matrix adjoint and matrix inverse and an Omega(sqrt(n)) lower bound for the elementary symmetric functions. The second technique is the communication complexity technique of Miltersen, Nisan, Safra, and Wigderson which we apply to the setting<br />of dynamic algebraic problems, obtaining similar lower bounds in the word RAM model. The third technique gives lower bounds in the weaker straight line program model. Using this technique, we show an ((log n)2= log log n) lower bound for dynamic discrete Fourier transform. Technical ingredients of our techniques are the incompressibility technique of Ben-Amram and Galil and the lower bound for depth-two superconcentrators of Radhakrishnan and Ta-Shma. The incompressibility technique is extended to arithmetic computation in arbitrary fields.


2009 ◽  
Vol 9 (5&6) ◽  
pp. 444-460
Author(s):  
Y.-Y. Shi ◽  
Y.-F. Zhu

A major open problem in communication complexity is whether or not quantum protocols can be exponentially more efficient than classical ones for computing a {\em total} Boolean function in the two-party interactive model. Razborov's result ({\em Izvestiya: Mathematics}, 67(1):145--159, 2002) implies the conjectured negative answer for functions $F$ of the following form: $F(x, y)=f_n(x_1\cdot y_1, x_2\cdot y_2, ..., x_n\cdot y_n)$, where $f_n$ is a {\em symmetric} Boolean function on $n$ Boolean inputs, and $x_i$, $y_i$ are the $i$'th bit of $x$ and $y$, respectively. His proof critically depends on the symmetry of $f_n$. We develop a lower-bound method that does not require symmetry and prove the conjecture for a broader class of functions. Each of those functions $F$ is the ``block-composition'' of a ``building block'' $g_k : \{0, 1\}^k \times \{0, 1\}^k \rightarrow \{0, 1\}$, and an $f_n : \{0, 1\}^n \rightarrow \{0, 1\}$, such that $F(x, y) = f_n( g_k(x_1, y_1), g_k(x_2, y_2), ..., g_k(x_n, y_n) )$, where $x_i$ and $y_i$ are the $i$'th $k$-bit block of $x, y\in\{0, 1\}^{nk}$, respectively. We show that as long as g_k itself is "hard'' enough, its block-composition with an arbitrary f_n has polynomially related quantum and classical communication complexities. For example, when g_k is the Inner Product function with k=\Omega(\log n), the deterministic communication complexity of its block-composition with any f_n is asymptotically at most the quantum complexity to the power of 7.


2014 ◽  
Vol 25 (03) ◽  
pp. 343-353 ◽  
Author(s):  
YU ZHOU ◽  
LIN WANG ◽  
WEIQIONG WANG ◽  
XINFENG DONG ◽  
XIAONI DU

The Global Avalanche Characteristics (including the sum-of-squares indicator and the absolute indicator) measure the overall avalanche characteristics of a cryptographic Boolean function. Son et al. (1998) gave the lower bound on the sum-of-squares indicator for a balanced Boolean function. In this paper, we give a sufficient and necessary condition on a balanced Boolean function reaching the lower bound on the sum-of-squares indicator. We also analyze whether these balanced Boolean functions exist, and if they reach the lower bounds on the sum-of-squares indicator or not. Our result implies that there does not exist a balanced Boolean function with n-variable for odd n(n ≥ 5). We conclude that there does not exist a m(m ≥ 1)-resilient function reaching the lower bound on the sum-of-squares indicator with n-variable for n ≥ 7.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-28
Author(s):  
Gopal Pandurangan ◽  
Peter Robinson ◽  
Michele Scquizzato

Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n >> k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main contribution is the General Lower Bound Theorem , a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. This result is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic, and this theorem can be used in a “cookbook” fashion to show distributed lower bounds for several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds on the round complexity of two fundamental graph problems, namely, PageRank computation and triangle enumeration . These applications show that our approach can yield lower bounds for problems where the application of communication complexity techniques seems not obvious or gives weak bounds, including and especially under a stochastic partition of the input. We then present distributed algorithms for PageRank and triangle enumeration with a round complexity that (almost) matches the respective lower bounds; these algorithms exhibit a round complexity that scales superlinearly in k , improving significantly over previous results [Klauck et al., SODA 2015]. Specifically, we show the following results: PageRank: We show a lower bound of Ὼ(n/k 2 ) rounds and present a distributed algorithm that computes an approximation of the PageRank of all the nodes of a graph in Õ(n/k 2 ) rounds. Triangle enumeration: We show that there exist graphs with m edges where any distributed algorithm requires Ὼ(m/k 5/3 ) rounds. This result also implies the first non-trivial lower bound of Ὼ(n 1/3 ) rounds for the congested clique model, which is tight up to logarithmic factors. We then present a distributed algorithm that enumerates all the triangles of a graph in Õ(m/k 5/3 + n/k 4/3 ) rounds.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Brajesh Kumar Singh

The rth-order nonlinearity of Boolean function plays a central role against several known attacks on stream and block ciphers. Because of the fact that its maximum equals the covering radius of the rth-order Reed-Muller code, it also plays an important role in coding theory. The computation of exact value or high lower bound on the rth-order nonlinearity of a Boolean function is very complicated problem, especially when r>1. This paper is concerned with the computation of the lower bounds for third-order nonlinearities of two classes of Boolean functions of the form Tr1nλxd for all x∈𝔽2n, λ∈𝔽2n*, where a d=2i+2j+2k+1, where i, j, and   k are integers such that i>j>k≥1 and n>2i, and b d=23ℓ+22ℓ+2ℓ+1, where ℓ is a positive integer such that gcdℓ,𝓃=1 and n>6.


2011 ◽  
Vol 11 (7&8) ◽  
pp. 649-676
Author(s):  
Julien Degorre ◽  
Marc Kaplan ◽  
Sophie Laplante ◽  
J\'er\'emie Roland

We study a model of communication complexity that encompasses many well-studied problems, including classical and quantum communication complexity, the complexity of simulating distributions arising from bipartite measurements of shared quantum states, and XOR games. In this model, Alice gets an input $x$, Bob gets an input $y$, and their goal is to each produce an output $a,b$ distributed according to some pre-specified joint distribution $p(a,b|x,y)$. Our results apply to any non-signaling distribution, that is, those where Alice's marginal distribution does not depend on Bob's input, and vice versa.~~~By taking a geometric view of the non-signaling distributions, we introduce a simple new technique based on affine combinations of lower-complexity distributions, and we give the first general technique to apply to all these settings, with elementary proofs and very intuitive interpretations. Specifically, we introduce two complexity measures, one which gives lower bounds on classical communication, and one for quantum communication. These measures can be expressed as convex optimization problems. We show that the dual formulations have a striking interpretation, since they coincide with maximum violations of Bell and Tsirelson inequalities. The dual expressions are closely related to the winning probability of XOR games. Despite their apparent simplicity, these lower bounds subsume many known communication complexity lower bound methods, most notably the recent lower bounds of Linial and Shraibman for the special case of Boolean functions. We show that as in the case of Boolean functions, the gap between the quantum and classical lower bounds is at most linear in the size of the support of the distribution, and does not depend on the size of the inputs. This translates into a bound on the gap between maximal Bell and Tsirelson inequality violations, which was previously known only for the case of distributions with Boolean outcomes and uniform marginals. It also allows us to show that for some distributions, information theoretic methods are necessary to prove strong lower bounds. ~~~ Finally, we give an exponential upper bound on quantum and classical communication complexity in the simultaneous messages model, for any non-signaling distribution. One consequence of this is a simple proof that any quantum distribution can be approximated with a constant number of bits of communication.


Sign in / Sign up

Export Citation Format

Share Document