ONE SUFFICIENT AND NECESSARY CONDITION ON BALANCED BOOLEAN FUNCTIONS WITH σf = 22n + 2n+3(n ≥ 3)

2014 ◽  
Vol 25 (03) ◽  
pp. 343-353 ◽  
Author(s):  
YU ZHOU ◽  
LIN WANG ◽  
WEIQIONG WANG ◽  
XINFENG DONG ◽  
XIAONI DU

The Global Avalanche Characteristics (including the sum-of-squares indicator and the absolute indicator) measure the overall avalanche characteristics of a cryptographic Boolean function. Son et al. (1998) gave the lower bound on the sum-of-squares indicator for a balanced Boolean function. In this paper, we give a sufficient and necessary condition on a balanced Boolean function reaching the lower bound on the sum-of-squares indicator. We also analyze whether these balanced Boolean functions exist, and if they reach the lower bounds on the sum-of-squares indicator or not. Our result implies that there does not exist a balanced Boolean function with n-variable for odd n(n ≥ 5). We conclude that there does not exist a m(m ≥ 1)-resilient function reaching the lower bound on the sum-of-squares indicator with n-variable for n ≥ 7.

2012 ◽  
Vol 12 (1&2) ◽  
pp. 138-148
Author(s):  
Cheng Lu ◽  
Jianxin Chen ◽  
Runyao Duan

We prove a lower bound on the $q$-maximal fidelities between two quantum channels $\E_0$ and $\E_1$ and an upper bound on the $q$-maximal fidelities between a quantum channel $\E$ and an identity $\I$. Then we apply these two bounds to provide a simple sufficient and necessary condition for sequential perfect distinguishability between $\E$ and $\I$ and provide both a lower bound and an upper bound on the minimum number of queries required to sequentially perfectly discriminating $\E$ and $\I$. Interestingly, in the $2$-dimensional case, both bounds coincide. Based on the optimal perfect discrimination protocol presented in \cite{DFY09}, we can further generalize the lower bound and upper bound to the minimum number of queries to perfectly discriminating $\E$ and $I$ over all possible discrimination schemes. Finally the two lower bounds are shown remain working for perfectly discriminating general two quantum channels $\E_0$ and $\E_1$ in sequential scheme and over all possible discrimination schemes respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Yu Zhou ◽  
Yongzhuang Wei ◽  
Fengrong Zhang

Encryption algorithm has an important application in ensuring the security of the Internet of Things. Boolean function is the basic component of symmetric encryption algorithm, and its many cryptographic properties are important indicators to measure the security of cryptographic algorithm. This paper focuses on the sum-of-squares indicator of Boolean function; an upper bound and a lower bound of the sum-of-squares on Boolean functions are obtained by the decomposition Boolean functions; some properties and a search algorithm of Boolean functions with the same autocorrelation (or cross-correlation) distribution are given. Finally, a construction method to obtain a balanced Boolean function with small sum-of-squares indicator is derived by decomposition Boolean functions. Compared with the known balanced Boolean functions, the constructed functions have the higher nonlinearity and the better global avalanche characteristics property.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Brajesh Kumar Singh

The rth-order nonlinearity of Boolean function plays a central role against several known attacks on stream and block ciphers. Because of the fact that its maximum equals the covering radius of the rth-order Reed-Muller code, it also plays an important role in coding theory. The computation of exact value or high lower bound on the rth-order nonlinearity of a Boolean function is very complicated problem, especially when r>1. This paper is concerned with the computation of the lower bounds for third-order nonlinearities of two classes of Boolean functions of the form Tr1nλxd for all x∈𝔽2n, λ∈𝔽2n*, where a d=2i+2j+2k+1, where i, j, and   k are integers such that i>j>k≥1 and n>2i, and b d=23ℓ+22ℓ+2ℓ+1, where ℓ is a positive integer such that gcdℓ,𝓃=1 and n>6.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-13
Author(s):  
Yu Zhou ◽  
Jianyong Hu ◽  
Xudong Miao ◽  
Yu Han ◽  
Fuzhong Zhang

Abstract The notion of the confusion coefficient is a property that attempts to characterize confusion property of cryptographic algorithms against differential power analysis. In this article, we establish a relationship between the confusion coefficient and the autocorrelation function for any Boolean function and give a tight upper bound and a tight lower bound on the confusion coefficient for any (balanced) Boolean function. We also deduce some deep relationships between the sum-of-squares of the confusion coefficient and other cryptographic indicators (the sum-of-squares indicator, hamming weight, algebraic immunity and correlation immunity), respectively. Moreover, we obtain some trade-offs among the sum-of-squares of the confusion coefficient, the signal-to-noise ratio and the redefined transparency order for a Boolean function.


2013 ◽  
Vol 50 (1) ◽  
pp. 195-207 ◽  
Author(s):  
Bin Li ◽  
Qihe Tang ◽  
Xiaowen Zhou

We study the two-sided exit problem of a time-homogeneous diffusion process with tax payments of loss-carry-forward type and obtain explicit formulae for the Laplace transforms associated with the two-sided exit problem. The expected present value of tax payments until default, the two-sided exit probabilities, and, hence, the nondefault probability with the default threshold equal to the lower bound are solved as immediate corollaries. A sufficient and necessary condition for the tax identity in ruin theory is discovered.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gang Han ◽  
Yu Yu ◽  
Xiangxue Li ◽  
Qifeng Zhou ◽  
Dong Zheng ◽  
...  

Several factors (e.g., balancedness, good correlation immunity) are considered as important properties of Boolean functions for using in cryptographic primitives. A Boolean function is perfect algebraic immune if it is with perfect immunity against algebraic and fast algebraic attacks. There is an increasing interest in construction of Boolean function that is perfect algebraic immune combined with other characteristics, like resiliency. A resilient function is a balanced correlation-immune function. This paper uses bivariate representation of Boolean function and theory of finite field to construct a generalized and new class of Boolean functions on even variables by extending the Carlet-Feng functions. We show that the functions generated by this construction support cryptographic properties of 1-resiliency and (sub)optimal algebraic immunity and further propose the sufficient condition of achieving optimal algebraic immunity. Compared experimentally with Carlet-Feng functions and the functions constructed by the method of first-order concatenation existing in the literature on even (from 6 to 16) variables, these functions have better immunity against fast algebraic attacks. Implementation results also show that they are almost perfect algebraic immune functions.


2020 ◽  
Vol 17 (7) ◽  
pp. 639-654
Author(s):  
Dheeraj Kumar SHARMA ◽  
Rajoo PANDEY

This paper consists of proposal of two new constructions of balanced Boolean function achieving a new lower bound of nonlinearity along with high algebraic degree and optimal or highest algebraic immunity. This construction has been made by using representation of Boolean function with primitive elements. Galois Field,  used in this representation has been constructed by using powers of primitive element such that greatest common divisor of power and  is 1. The constructed balanced  variable Boolean functions achieve higher nonlinearity, algebraic degree of , and algebraic immunity of   for odd ,  for even . The nonlinearity of Boolean function obtained in the proposed constructions is better as compared to existing Boolean functions available in the literature without adversely affecting other properties such as balancedness, algebraic degree and algebraic immunity.


2020 ◽  
pp. 1-22 ◽  
Author(s):  
Yisheng Song ◽  
Liqun Qi

In particle physics, scalar potentials have to be bounded from below in order for the physics to make sense. The precise expressions of checking lower bound of scalar potentials are essential, which is an analytical expression of checking copositivity and positive definiteness of tensors given by such scalar potentials. Because the tensors given by general scalar potential are fourth-order and symmetric, our work mainly focuses on finding precise expressions to test copositivity and positive definiteness of fourth-order tensors in this paper. First of all, an analytically sufficient and necessary condition of positive definiteness is provided for fourth-order 2-dimensional symmetric tensors. For fourth-order 3-dimensional symmetric tensors, we give two analytically sufficient conditions of (strictly) copositivity by using proof technique of reducing orders or dimensions of such a tensor. Furthermore, an analytically sufficient and necessary condition of copositivity is showed for fourth-order 2-dimensional symmetric tensors. We also give several distinctly analytically sufficient conditions of (strict) copositivity for fourth-order 2-dimensional symmetric tensors. Finally, these results may be applied to check lower bound of scalar potentials, and to present analytical vacuum stability conditions for potentials of two real scalar fields and the Higgs boson.


1993 ◽  
Vol 3 (4) ◽  
Author(s):  
A.A. Irmatov

AbstractA Boolean function is called a threshold function if its truth domain is a part of the n-cube cut off by some hyperplane. The number of threshold functions of n variables P(2, n) was estimated in [1, 2, 3]. Obtaining the lower bounds is a problem of special difficulty. Using a result of the paper [4], Zuev in [3] showed that for sufficiently large nP(2, n) > 2In the present paper a new proof which gives a more precise lower bound of P(2, n) is proposed, namely, it is proved that for sufficiently large nP(2, n) > 2


Sign in / Sign up

Export Citation Format

Share Document