Less is more! Support of Parallel and Time-critical Assembly Tasks with Augmented Reality

2021 ◽  
Author(s):  
Jannike Illing ◽  
Philipp Klinke ◽  
Max Pfingsthorn ◽  
Wilko Heuten
2021 ◽  
Author(s):  
Phathompat Boonyasaknanon ◽  
Raymond Pols ◽  
Katja Schulze ◽  
Robert Rundle

Abstract An augmented reality (AR) system is presented which enhances the real-time collaboration of domain experts involved in the geologic modeling of complex reservoirs. An evaluation of traditional techniques is compared with this new approach. The objective of geologic modeling is to describe the subsurface as accurately and in as much detail as possible given the available data. This is necessarily an iterative process since as new wells are drilled more data becomes available which either validates current assumptions or forces a re-evaluation of the model. As the speed of reservoir development increases there is a need for expeditious updates of the subsurface model as working with an outdated model can lead to costly mistakes. Common practice is for a geologist to maintain the geologic model while working closely with other domain experts who are frequently not co-located with the geologist. Time-critical analysis can be hampered by the fact that reservoirs, which are inherently 3D objects, are traditionally viewed with 2D screens. The system presented here allows the geologic model to be rendered as a hologram in multiple locations to allow domain experts to collaborate and analyze the reservoir in real-time. Collaboration on 3D models has not changed significantly in a generation. For co-located personnel the approach is to gather around a 2D screen. For remote personnel the approach has been sharing a model through a 2D screen along with video chat. These approaches are not optimal for many reasons. Over the years various attempts have been tried to enhance the collaboration experience and have all fallen short. In particular virtual reality (VR) has been seen as a solution to this problem. However, we have found that augmented reality (AR) is a much better solution for many subtle reasons which are explored in the paper. AR has already acquired an impressive track record in various industries. AR will have applications in nearly all industries. For various historical reasons, the uptake for AR is much faster in some industries than others. It is too early to tell whether the use of augmented reality in geological applications will be transformative, however the results of this initial work are promising.


2011 ◽  
Vol 1 ◽  
pp. 00029 ◽  
Author(s):  
Nirit Gavish ◽  
Teresa Gutierrez ◽  
Sabine Webel ◽  
Jorge Rodriguez ◽  
Franco Tecchia

2021 ◽  
Author(s):  
Mingyu Fu ◽  
Wei Fang ◽  
Shan Gao ◽  
Jianhao Hong ◽  
Yizhou Chen

Abstract Wearable augmented reality (AR) can superimpose virtual models or annotation on real scenes, and which can be utilized in assembly tasks and resulted in high-efficiency and error-avoided manual operations. Nevertheless, most of existing AR-aided assembly operations are based on the predefined visual instruction step-by-step, lacking scene-aware generation for the assembly assistance. To facilitate a friendly AR-aided assembly process, this paper proposed an Edge Computing driven Scene-aware Intelligent AR Assembly (EC-SIARA) system, and smart and worker-centered assistance is available to provide intuitive visual guidance with less cognitive load. In beginning, the connection between the wearable AR glasses and edge computing system is established, which can alleviate the computation burden for the resource-constraint wearable AR glasses, resulting in a high-efficiency deep learning module for scene awareness during the manual assembly process. And then, based on context understanding of the current assembly status, the corresponding augmented instructions can be triggered accordingly, avoiding the operator’s cognitive load to strictly follow the predefined procedure. Finally, quantitative and qualitative experiments are carried out to evaluate the EC-SIARA system, and experimental results show that the proposed method can realize a worker-center AR assembly process, which can improve the assembly efficiency and reduce the occurrence of assembly errors effectively.


2020 ◽  
Vol 1 ◽  
Author(s):  
Nawel Khenak ◽  
Jeanne Vézien ◽  
Patrick Bourdot

Although many augmented reality (AR)-based assembly support systems have been proposed in academic research and industry, the effectiveness of AR to resolve the occlusion issue in the context of a blind assembly process remains an unexplored topic. Therefore, the present work investigates how AR can assist operators during the execution of blind manual assembly tasks. Specifically, an AR research set-up was designed to provide assistance in occlusion situations during a peg-in-hole task. The set-up featured a see-through device (HoloLens), which provides operators with two modes of visual augmentations that directly overlay on the assembly objects. The first mode referred to as the “wireframe overlay” displays the inner part of the objects, providing an inside view of the occluded parts, and the second one referred to as the “axes overlay,” displays the axes of the objects and their slots, indicating how to align the different parts during the assembly. The effectiveness of these AR visualizations was compared to a baseline augmentation-free situation in a controlled experiment. Thus, following a within-subject design, 30 participants performed a two-stages blind insertion task. Their performances represented by task completion time, insertion errors, and smoothness of the insertions were recorded. In addition, a post-questionnaire reported their subjective perception of task difficulty during the task and their preferences. Results indicated a strong acceptance of participants for AR visualizations that they rated as allowing them to perform the task more easily. However, no statistically significant differences in terms of objective performance measures were found. Yet, it was found that axes overlay produced smoother trajectories compared to the wireframe overlay, highlighting the potential effect of more abstract visualization aids.


2018 ◽  
Vol 48 (2) ◽  
pp. 197-206 ◽  
Author(s):  
Filippo Brizzi ◽  
Lorenzo Peppoloni ◽  
Alessandro Graziano ◽  
Erika Di Stefano ◽  
Carlo Alberto Avizzano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document