scholarly journals Backdoor Attack on Deep Neural Networks Triggered by Fault Injection Attack on Image Sensor Interface

2021 ◽  
Author(s):  
Tatsuya Oyama ◽  
Shunsuke Okura ◽  
Kota Yoshida ◽  
Takeshi Fujino
2020 ◽  
pp. 105971232092291
Author(s):  
Guido Schillaci ◽  
Antonio Pico Villalpando ◽  
Verena V Hafner ◽  
Peter Hanappe ◽  
David Colliaux ◽  
...  

This work presents an architecture that generates curiosity-driven goal-directed exploration behaviours for an image sensor of a microfarming robot. A combination of deep neural networks for offline unsupervised learning of low-dimensional features from images and of online learning of shallow neural networks representing the inverse and forward kinematics of the system have been used. The artificial curiosity system assigns interest values to a set of pre-defined goals and drives the exploration towards those that are expected to maximise the learning progress. We propose the integration of an episodic memory in intrinsic motivation systems to face catastrophic forgetting issues, typically experienced when performing online updates of artificial neural networks. Our results show that adopting an episodic memory system not only prevents the computational models from quickly forgetting knowledge that has been previously acquired but also provides new avenues for modulating the balance between plasticity and stability of the models.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 612 ◽  
Author(s):  
Eldar Šabanovič ◽  
Vidas Žuraulis ◽  
Olegas Prentkovskis ◽  
Viktor Skrickij

Nowadays, vehicles have advanced driver-assistance systems which help to improve vehicle safety and save the lives of drivers, passengers and pedestrians. Identification of the road-surface type and condition in real time using a video image sensor, can increase the effectiveness of such systems significantly, especially when adapting it for braking and stability-related solutions. This paper contributes to the development of the new efficient engineering solution aimed at improving vehicle dynamics control via the anti-lock braking system (ABS) by estimating friction coefficient using video data. The experimental research on three different road surface types in dry and wet conditions has been carried out and braking performance was established with a car mathematical model (MM). Testing of a deep neural networks (DNN)-based road-surface and conditions classification algorithm revealed that this is the most promising approach for this task. The research has shown that the proposed solution increases the performance of ABS with a rule-based control strategy.


2021 ◽  
Author(s):  
Annachiara Ruospo ◽  
Lucas Matana Luza ◽  
Alberto Bosio ◽  
Marcello Traiola ◽  
Luigi Dilillo ◽  
...  

Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

2018 ◽  
Author(s):  
Chi Zhang ◽  
Xiaohan Duan ◽  
Ruyuan Zhang ◽  
Li Tong

Sign in / Sign up

Export Citation Format

Share Document