Testing AGV Mobility Control Method for MANET Coverage Optimization using Procedural Generation

2021 ◽  
Author(s):  
Christian Sauer ◽  
Eike Lyczkowski ◽  
Marco Schmidt ◽  
Andreas Nüchter ◽  
Tobias Hoßfeld
2021 ◽  
Author(s):  
Hasan Al-Ibadi ◽  
Karl Stephen ◽  
Eric Mackay

Abstract We introduce a pseudoisation method to upscale polymer flooding in order to capture the flow behaviour of fine scale models. This method is also designed to improve the predictability of pressure profiles during this process. This method controls the numerical dispersion of coarse grid models so that we are able to reproduce the flow behaviour of the fine scale model. To upscale polymer flooding, three levels of analysis are required such that we need to honour (a) the fractional flow solution, (b) the water and oil mobility and (c) appropriate upscaling of single phase flow. The outcome from this analysis is that a single pseudo relative permeability set that honours the modification that polymer applies to water viscosity modification without explicitly changing it. The shape of relative permeability can be chosen to honour the fractional flow solution of the fine scale using the analytical solution. This can result in a monotonic pseudo relative permeability set and we call it the Fractional-Flow method. To capture the pressure profile as well, individual relative permeability curves must be chosen appropriately for each phase to ensure the correct total mobility. For polymer flooding, changes to the water relative permeability included the changes to water viscosity implicitly thus avoiding the need for inclusion of a polymer solute. We call this type of upscaling as Fractional-Flow-Mobility control method. Numerical solution of the upscaled models, obtained using this method, were validated against fine scale models for 1D homogenous model and as well as 3D models with randomly distributed permeability for various geological realisations. The recovery factor and water cut matched the fine scale model very well. The pressure profile was reasonably predictable using the Fractional-Flow-Mobility control method. Both Fractional-Flow and Fractional-flow-Mobility control methods can be calculated in advance without running a fine scale model where the analysis is based on analytical solution even though produced a non-monotonic pseudo relative permeability curve. It simplified the polymer model so that it is much easier and faster to simulate. It offers the opportunity to quickly predict oil and water phase behaviour.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1698
Author(s):  
Qi Xu ◽  
Jiajun Chen ◽  
Xinran Song

Shear-thinning polymers have been introduced to contaminant remediation in the subsurface as a mobility control method applied to mitigate the inefficient delivery of remedial agents caused by geological heterogeneity. Laboratory experiments have been conducted to assess the compatibility of polymers (xanthan and hydrolyzed polyacrylamide (HPAM)) and oxidants (KMnO4 and Na2S2O8) through quantitative evaluation of the viscosity maintenance, shear-thinning performance, and oxidant consumption. The mechanism that causes viscosity loss and the influence of the groundwater environment on the mixture viscosity were also explored. The xanthan–KMnO4 mixture exhibited the best performance in both viscosity retention and shear-thinning behavior with retention rates higher than 75% and 73.5%, respectively. Furthermore, the results indicated that xanthan gum has a high resistance to MnO4− and that K+ plays a leading role in its viscosity reduction, while HPAM is much more sensitive to MnO4−. The viscosity responses of the two polymers to Na2S2O8 and NaCl were almost consistent with that of KMnO4; salt ions displayed an instantaneous effect on the solution’s viscosity, while the oxide ions could cause the solution’s viscosity to decrease continuously with time. Since xanthan exhibited acceptable oxidant consumption as well, xanthan–KMnO4 is considered to be the optimal combination. In addition, the results implied that the effects of salt ions and the water pH on the mixture solution could be acceptable. In the 2D tank test, it was found that when xanthan gum was introduced, the sweeping efficiency of the oxidant in the low-permeability zone was increased from 28.2% to 100%. These findings demonstrated the feasibility of using a xanthan–KMnO4 mixture for actual site remediation.


2001 ◽  
Vol 84 (9) ◽  
pp. 16-26
Author(s):  
Tadao Saito ◽  
Hitoshi Aida ◽  
Terumasa Aoki ◽  
Soichiro Hidaka ◽  
Tredej Toranawigtrai ◽  
...  

2018 ◽  
Vol 138 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Taichi Kawakami ◽  
Toshikazu Harada ◽  
Masayoshi Yamamoto ◽  
Kazuhiro Umetani

Sign in / Sign up

Export Citation Format

Share Document