scholarly journals Integrating Unmanned Aerial Vehicle and Deep Learning Algorithm for Pipeline Monitoring and Inspection in the Oil and Gas Sector

2021 ◽  
Author(s):  
Uchechi F. Ukaegbu ◽  
Lagouge K. Tartibu ◽  
Modestus O. Okwu ◽  
Isaac O. Olayode
Author(s):  
Yina Wu ◽  
Mohamed Abdel-Aty ◽  
Ou Zheng ◽  
Qing Cai ◽  
Shile Zhang

This paper presents an automated traffic safety diagnostics solution named “Automated Roadway Conflict Identification System” (ARCIS) that uses deep learning techniques to process traffic videos collected by unmanned aerial vehicle (UAV). Mask region convolutional neural network (R-CNN) is employed to improve detection of vehicles in UAV videos. The detected vehicles are tracked by a channel and spatial reliability tracking algorithm, and vehicle trajectories are generated based on the tracking algorithm. Missing vehicles can be identified and tracked by identifying stationary vehicles and comparing intersect of union (IOU) between the detection results and the tracking results. Rotated bounding rectangles based on the pixel-to-pixel manner masks that are generated by mask R-CNN detection are introduced to obtain precise vehicle size and location data. Based on the vehicle trajectories, post-encroachment time (PET) is calculated for each conflict event at the pixel level. By comparing the PET values and the threshold, conflicts with the corresponding pixels in which the conflicts happened can be reported. Various conflict types: rear-end, head on, sideswipe, and angle, can also be determined. A case study at a typical signalized intersection is presented; the results indicate that the proposed framework could significantly improve the accuracy of the output data. Moreover, safety diagnostics for the studied intersection are conducted by calculating the PET values for each conflict event. It is expected that the proposed detection and tracking method with UAVs could help diagnose road safety problems efficiently and appropriate countermeasures could then be proposed.


2021 ◽  
Author(s):  
Myssar Jabbar Hammood Al-Battbootti ◽  
Iuliana Marin ◽  
Nicolae Goga ◽  
Ramona Popa

2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Sign in / Sign up

Export Citation Format

Share Document