A general description of the national aeronautics and space administration real time computing complex

Author(s):  
J. E. Hamlin
Author(s):  
Jiyang Yu ◽  
Dan Huang ◽  
Siyang Zhao ◽  
Nan Pei ◽  
Huixia Cheng ◽  
...  

Author(s):  
A. V. Bratulin ◽  
◽  
M. B. Nikiforov ◽  
A. I. Efimov ◽  
◽  
...  

2008 ◽  
Vol 26 (2) ◽  
pp. 345-351 ◽  
Author(s):  
V. Romano ◽  
S. Pau ◽  
M. Pezzopane ◽  
E. Zuccheretti ◽  
B. Zolesi ◽  
...  

Abstract. The eSWua project is based on measurements performed by all the instruments installed by the upper atmosphere physics group of the Istituto Nazionale di Geofisica e Vulcanologia, Italy and on all the related studies. The aim is the realization of a hardware-software system to standardize historical and real-time observations for different instruments. An interactive Web site, supported by a well organized database, can be a powerful tool for the scientific and technological community in the field of telecommunications and space weather. The most common and useful database type for our purposes is the relational one, in which data are organized in tables for petabytes data archiving and the complete flexibility in data retrieving. The project started in June 2005 and will last till August 2007. In the first phase the major effort has been focused on the design of hardware and database architecture. The first two databases related to the DPS4 digisonde and GISTM measurements are complete concerning populating, tests and output procedures. Details on the structure and Web tools concerning these two databases are presented, as well as the general description of the project and technical features.


2019 ◽  
Vol 182 ◽  
pp. 63-72 ◽  
Author(s):  
Gregory Levitin ◽  
Liudong Xing ◽  
Liang Luo

2018 ◽  
Vol 18 (03) ◽  
pp. e27
Author(s):  
Monica Denham ◽  
Sigfrido Waidelich ◽  
Karina Laneri

Our motivation comes from the need of a tailored computational tool for simulation and prediction of forest fire propagation, to be used by firefighters in Patagonia, Argentina. Based on previous works on Graphic Processing Units (GPU) for fitting and simulating fires in our region, we developed a visualization interface for real time computing, simulation and prediction of fire propagation. We have the possibility of changing the ensemble of raster maps layers to change the region in which fire will propagate.The visualization platform runs on GPUs and the user can rotate and zoom the landscape to select the optimal view of fire propagation. Opacity of different layers can be regulated by the user, allowing to see fire propagation at the same time that underlying vegetation, wind direction and intensity. The ignition point can also be selected by the user, and firebreaks can be plotted while simulation is going on.After the performance of a high number of stochastic simulations in parallel in GPUs, the application shows a map of the final fire surface colored according to the probability that a given cell burns. In this way the user can visually identify the most critical direction for fire propagation, a useful information to stop fire optimizing resources, which is specially important when they are scarce like is the case of our Patagonia region.


Sign in / Sign up

Export Citation Format

Share Document