Distinct Mechanisms of Transcription Initiation by RNA Polymerases I and II

2018 ◽  
Vol 47 (1) ◽  
pp. 425-446 ◽  
Author(s):  
Christoph Engel ◽  
Simon Neyer ◽  
Patrick Cramer

RNA polymerases I and II (Pol I and Pol II) are the eukaryotic enzymes that catalyze DNA-dependent synthesis of ribosomal RNA and messenger RNA, respectively. Recent work shows that the transcribing forms of both enzymes are similar and the fundamental mechanisms of RNA chain elongation are conserved. However, the mechanisms of transcription initiation and its regulation differ between Pol I and Pol II. Recent structural studies of Pol I complexes with transcription initiation factors provided insights into how the polymerase recognizes its specific promoter DNA, how it may open DNA, and how initiation may be regulated. Comparison with the well-studied Pol II initiation system reveals a distinct architecture of the initiation complex and visualizes promoter- and gene-class-specific aspects of transcription initiation. On the basis of new structural studies, we derive a model of the Pol I transcription cycle and provide a molecular movie of Pol I transcription that can be used for teaching.

2008 ◽  
Vol 28 (12) ◽  
pp. 3979-3994 ◽  
Author(s):  
Lu Gao ◽  
David S. Gross

ABSTRACT It is well accepted that for transcriptional silencing in budding yeast, the evolutionarily conserved lysine deacetylase Sir2, in concert with its partner proteins Sir3 and Sir4, establishes a chromatin structure that prevents RNA polymerase II (Pol II) transcription. However, the mechanism of repression remains controversial. Here, we show that the recruitment of Pol II, as well as that of the general initiation factors TBP and TFIIH, occurs unimpeded to the silent HMR a 1 and HMLα1/HMLα2 mating promoters. This, together with the fact that Pol II is Ser5 phosphorylated, implies that SIR-mediated silencing is permissive to both preinitiation complex (PIC) assembly and transcription initiation. In contrast, the occupancy of factors critical to both mRNA capping and Pol II elongation, including Cet1, Abd1, Spt5, Paf1C, and TFIIS, is virtually abolished. In agreement with this, efficiency of silencing correlates not with a restriction in Pol II promoter occupancy but with a restriction in capping enzyme recruitment. These observations pinpoint the transition between polymerase initiation and elongation as the step targeted by Sir2 and indicate that transcriptional silencing is achieved through the differential accessibility of initiation and capping/elongation factors to chromatin. We compare Sir2-mediated transcriptional silencing to a second repression mechanism, mediated by Tup1. In contrast to Sir2, Tup1 prevents TBP, Pol II, and TFIIH recruitment to the HMLα1 promoter, thereby abrogating PIC formation.


2016 ◽  
Vol 113 (3) ◽  
pp. 602-607 ◽  
Author(s):  
Timothy T. Harden ◽  
Christopher D. Wells ◽  
Larry J. Friedman ◽  
Robert Landick ◽  
Ann Hochschild ◽  
...  

Production of a messenger RNA proceeds through sequential stages of transcription initiation and transcript elongation and termination. During each of these stages, RNA polymerase (RNAP) function is regulated by RNAP-associated protein factors. In bacteria, RNAP-associated σ factors are strictly required for promoter recognition and have historically been regarded as dedicated initiation factors. However, the primary σ factor in Escherichia coli, σ70, can remain associated with RNAP during the transition from initiation to elongation, influencing events that occur after initiation. Quantitative studies on the extent of σ70 retention have been limited to complexes halted during early elongation. Here, we used multiwavelength single-molecule fluorescence-colocalization microscopy to observe the σ70–RNAP complex during initiation from the λ PR′ promoter and throughout the elongation of a long (>2,000-nt) transcript. Our results provide direct measurements of the fraction of actively transcribing complexes with bound σ70 and the kinetics of σ70 release from actively transcribing complexes. σ70 release from mature elongation complexes was slow (0.0038 s−1); a substantial subpopulation of elongation complexes retained σ70 throughout transcript elongation, and this fraction depended on the sequence of the initially transcribed region. We also show that elongation complexes containing σ70 manifest enhanced recognition of a promoter-like pause element positioned hundreds of nucleotides downstream of the promoter. Together, the results provide a quantitative framework for understanding the postinitiation roles of σ70 during transcription.


1989 ◽  
Vol 35 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Wolfram Zillig ◽  
Hans-Peter Klenk ◽  
Peter Palm ◽  
Gabriela Pühler ◽  
Felix Gropp ◽  
...  

Unrooted phylogenetic dendrograms were calculated by two independent methods, parsimony and distance matrix analysis, from an alignment of the derived amino acid sequences of the A and C subunits of the DNA-dependent RNA polymerases of the archaebacteria Sulfolobus acidocaldarius and Halobacterium halobium with 12 corresponding sequences including a further set of archaebacterial A + C subunits, eukaryotic nuclear RNA polymerases, pol I, pol II, and pol III, eubacterial β′ and chloroplast β′ and β″ subunits. They show the archaebacteria as a coherent group in close neighborhood of and sharing a bifurcation with eukaryotic pol II and (or) pol IIIA components. The most probable trees show pol IA branching off from the tree separately at a bifurcation with the eubacterial β′ lineage. The implications of these results, especially for understanding the possibly chimeric origin of the eukaryotic nuclear genome, are discussed.Key words: transcription, evolution, taxonomy, subunits, gene organization.


2020 ◽  
Author(s):  
Fabian Blombach ◽  
Thomas Fouqueau ◽  
Dorota Matelska ◽  
Katherine Louise Smollett ◽  
Finn Werner

Recruitment of RNA polymerase and initiation factors to the promoter is the only known mechanisms for transcription activation and repression in archaea. Whether any of the subsequent steps towards productive transcription elongation is involved in regulation is not known. We characterised how the basal transcription machinery is distributed along genes in the archaeon Sulfolobus solfataricus. We discovered a distinct early elongation phase where RNA polymerases sequentially recruit the elongation factors Spt4/5 and Elf1 to form the transcription elongation complex (TEC) before the TEC escapes into productive transcription. TEC escape is rate-limiting for transcription output during exponential growth. Oxidative stress causes changes in TEC escape that correlate with changes in the transcriptome. Our results thus establish that TEC escape contributes to the basal promoter strength and facilitates transcription regulation. Impaired TEC escape coincides with the accumulation of initiation factors at the promoter and recruitment of termination factor aCPSF1 to the early TEC. This suggests two possible mechanisms for how TEC escape limits transcription, physically blocking upstream RNA polymerases during transcription initiation and premature termination of early TECs.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yan Han ◽  
Chunli Yan ◽  
Thi Hoang Duong Nguyen ◽  
Ashleigh J Jackobel ◽  
Ivaylo Ivanov ◽  
...  

Transcription initiation by RNA Polymerase I (Pol I) depends on the Core Factor (CF) complex to recognize the upstream promoter and assemble into a Pre-Initiation Complex (PIC). Here, we solve a structure of Saccharomyces cerevisiae Pol I-CF-DNA to 3.8 Å resolution using single-particle cryo-electron microscopy. The structure reveals a bipartite architecture of Core Factor and its recognition of the promoter from −27 to −16. Core Factor’s intrinsic mobility correlates well with different conformational states of the Pol I cleft, in addition to the stabilization of either Rrn7 N-terminal domain near Pol I wall or the tandem winged helix domain of A49 at a partially overlapping location. Comparison of the three states in this study with the Pol II system suggests that a ratchet motion of the Core Factor-DNA sub-complex at upstream facilitates promoter melting in an ATP-independent manner, distinct from a DNA translocase actively threading the downstream DNA in the Pol II PIC.


2020 ◽  
pp. jbc.RA120.015904
Author(s):  
Ruth Q. Jacobs ◽  
Zachariah M Ingram ◽  
Aaron L. Lucius ◽  
David A. Schneider

Eukaryotes express at least three nuclear DNA-dependent RNA polymerases (Pols) responsible for synthesizing all RNA required by the cell. Despite sharing structural homology, they have functionally diverged to suit their distinct cellular roles. Although the Pols have been studied extensively, direct comparison of their enzymatic properties is difficult since studies are often conducted under disparate experimental conditions and techniques. Here, we directly compare and reveal functional differences between Saccharomyces cerevisiae Pols I and II using a series of quantitative in vitro transcription assays. We find that Pol I single and multi-nucleotide addition rate constants are faster than those of Pol II. Pol I elongation complexes (ECs) are less stable than Pol II ECs, and Pol I is more error prone than Pol II. Collectively, these data show that the enzymatic properties of the Pols have diverged over the course of evolution, optimizing these enzymes for their unique cellular responsibilities.


2016 ◽  
Vol 113 (11) ◽  
pp. 2946-2951 ◽  
Author(s):  
Ana Lisica ◽  
Christoph Engel ◽  
Marcus Jahnel ◽  
Édgar Roldán ◽  
Eric A. Galburt ◽  
...  

During DNA transcription, RNA polymerases often adopt inactive backtracked states. Recovery from backtracks can occur by 1D diffusion or cleavage of backtracked RNA, but how polymerases make this choice is unknown. Here, we use single-molecule optical tweezers experiments and stochastic theory to show that the choice of a backtrack recovery mechanism is determined by a kinetic competition between 1D diffusion and RNA cleavage. Notably, RNA polymerase I (Pol I) and Pol II recover from shallow backtracks by 1D diffusion, use RNA cleavage to recover from intermediary depths, and are unable to recover from extensive backtracks. Furthermore, Pol I and Pol II use distinct mechanisms to avoid nonrecoverable backtracking. Pol I is protected by its subunit A12.2, which decreases the rate of 1D diffusion and enables transcript cleavage up to 20 nt. In contrast, Pol II is fully protected through association with the cleavage stimulatory factor TFIIS, which enables rapid recovery from any depth by RNA cleavage. Taken together, we identify distinct backtrack recovery strategies of Pol I and Pol II, shedding light on the evolution of cellular functions of these key enzymes.


2019 ◽  
Vol 47 (17) ◽  
pp. 9180-9197 ◽  
Author(s):  
Emma Briggs ◽  
Kathryn Crouch ◽  
Leandro Lemgruber ◽  
Graham Hamilton ◽  
Craig Lapsley ◽  
...  

Abstract Ribonucleotides represent a threat to DNA genome stability and transmission. Two types of Ribonuclease H (RNase H) excise ribonucleotides when they form part of the DNA strand, or hydrolyse RNA when it base-pairs with DNA in structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast survives the absence of both enzymes. RNase H1 loss is tolerated by the parasite Trypanosoma brucei but no work has examined the function of RNase H2. Here we show that loss of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, revealing a novel and critical role for RNase H2. Differential gene expression analysis reveals limited overall changes in RNA levels for RNA Pol II genes after TbRH2A loss, but increased perturbation of nucleotide metabolic genes. Finally, we show that TbRH2A loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, also leading to altered gene expression. Thus, we demonstrate separation of function between two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but overlap in function during RNA Pol I-mediated gene expression during host immune evasion.


2006 ◽  
Vol 34 (6) ◽  
pp. 1058-1061 ◽  
Author(s):  
P. Cramer

Here, I review three new structural studies from our laboratory. First, the crystal structure of RNA polymerase (Pol) II in complex with an RNA inhibitor revealed that this RNA blocks transcription initiation by preventing DNA loading into the active-centre cleft. Secondly, the structure of the SRI (Set2 Rpb1-interacting) domain of the histone methyltransferase Set2 revealed a novel fold for specific interaction with the doubly phosphorylated CTD (C-terminal repeat domain) of Pol II. Finally, we obtained the first structural information on Pol III, in the form of an 11-subunit model obtained by combining a homology model of the nine-subunit core enzyme with a new X-ray structure of the subcomplex C17/25.


Sign in / Sign up

Export Citation Format

Share Document