scholarly journals Cardiac MRI and Texture Analysis of Myocardial T1 and T2 Maps in Myocarditis with Acute versus Chronic Symptoms of Heart Failure

Radiology ◽  
2019 ◽  
Vol 292 (3) ◽  
pp. 608-617 ◽  
Author(s):  
Bettina Baessler ◽  
Christian Luecke ◽  
Julia Lurz ◽  
Karin Klingel ◽  
Arijit Das ◽  
...  
Radiology ◽  
2018 ◽  
Vol 289 (2) ◽  
pp. 357-365 ◽  
Author(s):  
Bettina Baessler ◽  
Christian Luecke ◽  
Julia Lurz ◽  
Karin Klingel ◽  
Maximilian von Roeder ◽  
...  

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
E Bollache ◽  
AT Huber ◽  
J Lamy ◽  
E Afari ◽  
TM Bacoyannis ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background. Recent studies revealed the ability of MRI T1 mapping to characterize myocardial involvement in both idiopathic inflammatory myopathy (IIM) and acute viral myocarditis (AVM), as compared to healthy controls. However, neither myocardial T1 nor T2 maps were able to discriminate between IIM and AVM patients, when considering conventional myocardial mean values and derived indices such as lambda and extracellular volume. Purpose. To investigate the ability of T1 mapping-derived texture analysis to differentiate IIM from AVM. Methods. Forty patients, 20 with IIM (51 ± 17 years, 9 men) and 20 with AVM (34 ± 13 years, 16 men) underwent 1.5T MRI T1 mapping using a modified Look-Locker inversion-recovery sequence before and 15 minutes after injection of a gadolinium contrast agent. After manual delineation of endocardial and epicardial borders and co-registration of all inversion time images, native and post-contrast T1 maps were estimated. Myocardial texture analysis was performed on native T1 maps. Textural features such as: autocorrelation, contrast, dissimilarity, energy and sum entropy were used to build a least squares-based linear regression model. Finally, receiver operating characteristic (ROC) analysis was used to investigate the ability of such texture features score to classify IIM vs. AVM patients, compared to the performance of mean myocardial T1. A Wilcoxon rank-sum test was also used to test difference significance between groups. Results. Both native and post-contrast mean myocardial T1 values were comparable between IIM (native: 1022 ± 43 ms; post-contrast: 319 ± 44 ms) and AVM (1056 ± 59 ms, p = 0.07; 318 ± 35 ms, p = 0.90, respectively) groups. Results of ROC analyses are provided in the Table, indicating that a better discrimination between IIM and AVM patients was obtained when using texture features, with higher AUC and accuracy than mean T1 values (Figure). Conclusion. Texture analysis derived from MRI T1 maps without contrast agent injection was able to discriminate between IIM and AVM with higher accuracy, sensitivity and specificity than conventional T1 indices. Such analysis could provide a useful myocardial signature to help diagnose and manage cardiac alterations associated with IIM in patients presenting with myocarditis and primarily suspected of AVM. Table Area under curve (AUC) Accuracy Sensitivity Specificity Native T1 0.67 0.70 0.65 0.75 Post-contrast T1 0.49 0.60 0.25 0.95 Texture features score 0.85 0.82 0.90 0.75 ROC analyses for classification between IIM and AVM patients Abstract Figure


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Natasha Cuk ◽  
Jae H Cho ◽  
Donghee Han ◽  
Joseph E Ebinger ◽  
Eugenio Cingolani

Introduction: Sudden death due to ventricular arrhythmias (VA) is one of the main causes of mortality in patients with heart failure and preserved ejection fraction (HFpEF). Ventricular fibrosis in HFpEF has been suspected as a substrate of VA, but the degree of fibrosis has not been well characterized. Hypothesis: HFpEF patients with increased degree of fibrosis will manifest more VA. Methods: Cedars-Sinai medical records were probed using Deep 6 artificial intelligence data extraction software to identify patients with HFpEF who underwent cardiac magnetic resonance imaging (MRI). MRI of identified patients were reviewed to measure extra-cellular volume (ECV) and degree of fibrosis. Ambulatory ECG monitoring (Ziopatch) of those patients were also reviewed to study the prevalence of arrhythmias. Results: A total of 12 HFpEF patients who underwent cardiac MRI were identified. Patients were elderly (mean age 70.3 ± 7.1), predominantly female (83%), and overweight (mean BMI 32 ± 9). Comorbidities included hypertension (83%), dyslipidemia (75%), and coronary artery disease (67%). Mean left ventricular ejection fraction by echocardiogram was 63 ± 8.7%. QTc as measured on ECG was not significantly prolonged (432 ± 15 ms). ECV was normal in those patients for whom it was available (24.2 ± 3.1, n = 9) with 3/12 patients (25%) demonstrating ventricular fibrosis by MRI (average burden of 9.6 ± 5.9%). Ziopatch was obtained in 8/12 patients (including all 3 patients with fibrosis) and non-sustained ventricular tachycardia (NSVT) was identified in 5/8 (62.5%). One patient with NSVT and without fibrosis on MRI also had a sustained VA recorded. In those patients who had Ziopatch monitoring, there was no association between presence of fibrosis and NSVT (X2 = 0.035, p = 0.85). Conclusions: Ventricular fibrosis was present in 25% of HFpEF patients in this study and NSVT was observed in 62.5% of those patients with HFpEF who had Ziopatch monitoring. The presence of fibrosis by Cardiac MRI was not associated with NSVT in this study; however, the size of the cohort precludes broadly generalizable conclusions about this association. Further investigation is required to better understand the relationship between ventricular fibrosis by MRI and VA in patients with HFpEF.


2011 ◽  
Vol 28 (5) ◽  
pp. 1111-1122 ◽  
Author(s):  
Christian Hamilton-Craig ◽  
Wendy E. Strugnell ◽  
O. Christopher Raffel ◽  
Italo Porto ◽  
Darren L. Walters ◽  
...  

Author(s):  
Yao-Dan Liang ◽  
Yuan-Wei Xu ◽  
Wei-Hao Li ◽  
Ke Wan ◽  
Jia-Yu Sun ◽  
...  

Abstract Background Peripartum cardiomyopathy (PPCM) is rare and potentially life-threatening; its etiology remains unclear. Imaging characteristics on cardiovascular magnetic resonance (CMR) and their prognostic significance have rarely been studied. We sought to determine CMR’s prognostic value in PPCM by using T1 and T2 mapping techniques. Methods Data from 21 PPCM patients from our CMR registry database were analyzed. The control group comprised 20 healthy age-matched females. All subjects underwent comprehensive contrast-enhanced CMR. T1 and T2 mapping using modified Look-Locker inversion recovery and T2 prep balanced steady-state free precession sequences, respectively. Ventricular size and function, late gadolinium enhancement (LGE), myocardial T1 value, extracellular volume (ECV), and T2 value were analyzed. Transthoracic echocardiography was performed at baseline and during follow-up. The recovered left ventricular ejection fraction (LVEF) was defined as LVEF ≥50% on echocardiography follow-up after at least 6 months of the diagnosis. Results CMR imaging showed that the PPCM patients had severely impaired LVEF and right ventricular ejection fraction (LVEF: 26.8 ± 10.6%; RVEF: 33.9 ± 14.6%). LGE was seen in eight (38.1%) cases. PPCM patients had significantly higher native T1 and ECV (1345 ± 79 vs. 1212 ± 32 ms, P < 0.001; 33.9 ± 5.2% vs. 27.1 ± 3.1%, P < 0.001; respectively) and higher myocardial T2 value (42.3 ± 3.7 vs. 36.8 ± 2.3 ms, P < 0.001) than did the normal controls. After a median 2.5-year follow-up (range: 8 months-5 years), six patients required readmission for heart failure, two died, and 10 showed left ventricular function recovery. The LVEF-recovered group showed significantly lower ECV (30.7 ± 2.1% vs. 36.8 ± 5.6%, P = 0.005) and T2 (40.6 ± 3.0 vs. 43.9 ± 3.7 ms, P = 0.040) than the unrecovered group. Multivariable logistic regression analysis showed ECV (OR = 0.58 for per 1% increase, P = 0.032) was independently associated with left ventricular recovery in PPCM. Conclusions Compared to normal controls, PPCM patients showed significantly higher native T1, ECV, and T2. Native T1, ECV, and T2 were associated with LVEF recovery in PPCM. Furthermore, ECV could independently predict left ventricular function recovery in PPCM.


Sign in / Sign up

Export Citation Format

Share Document