Improved Thermal Stability of Indium Zinc Oxide TFTs by Low Temperature Post Annealing

2019 ◽  
Vol 33 (5) ◽  
pp. 337-344
Author(s):  
Anil Indluru ◽  
Terry L. Alford
2001 ◽  
Vol 670 ◽  
Author(s):  
Min-Joo Kim ◽  
Hyo-Jick Choi ◽  
Dae-Hong Ko ◽  
Ja-Hum Ku ◽  
Siyoung Choi ◽  
...  

ABSTRACTThe silicidation reactions and thermal stability of Co silicide formed from Co-Ta/Si systems have been investigated. In case of Co-Ta alloy process, the formation of low resistive CoSi2phase is delayed to about 660°C, as compared to conventional Co/Si system. Moreover, the presence of Ta in Co-Ta alloy films reduces the silicidation reaction rate, resulting in the strong preferential orientation in CoSi2 films. Upon high temperature post annealing in the furnace, the sheet resistance of Co-silicide formed from Co/Si systems increases significantly, while that of Co-Ta/Si systems maintains low. This is due to the formation of TaSi2 at the grain boundaries and surface of Co-silicide films, which prevents the grain boundary migration thereby slowing the agglomeration. Therefore, from our research, increased thermal stability of Co-silicide films was successfully obtained from Co-Ta alloy process.


RSC Advances ◽  
2014 ◽  
Vol 4 (86) ◽  
pp. 45742-45748 ◽  
Author(s):  
Byeong-Geun Son ◽  
So Yeon Je ◽  
Hyo Jin Kim ◽  
Jae Kyeong Jeong

1969 ◽  
Vol 42 (2) ◽  
pp. 418-440 ◽  
Author(s):  
R. M. Russell ◽  
T. D. Skinner ◽  
A. A. Watson

Abstract It was shown in Part I that the use of EV systems in NR provides a simple network in which the crosslinks are mainly monosulfidic. Part II describes in some detail the properties of vulcanizates obtained by the use of EV systems and their relationship to conventional and TMTD-zinc oxide cured vulcanizates. The disadvantages of short scorch time and heavy bloom which accompany the TMTD-zinc oxide system are overcome by the new EV systems. The monosulfidic network obtained by the use of EV systems confers on NR good overall physical properties together with much improved resistance towards thermal and thermal oxidative aging. The thermal stability of this type of network is reflected in the outstanding resistance of the vulcanizates to set and reversion, and their good resistance to heat build-up under dynamic conditions. Vulcanizates derived from EV systems have increased resistance to thermal oxidative aging due to the inherent thermal stability of the networks and good response to antioxidant protection. This increased resistance results in much better retention of tensile properties, tear resistance and fatigue cracking resistance on aging, relative to that of conventionally cured vulcanizates.


Sign in / Sign up

Export Citation Format

Share Document