The Roles of Fluid Hydrodynamics, Mass Transfer, Rust Layer and Macro-Cell Current on Flow Accelerated Corrosion of Carbon Steel in Oxygen Containing Electrolyte

2020 ◽  
Vol 167 (14) ◽  
pp. 141510
Author(s):  
Liang Liu ◽  
Yunze Xu ◽  
Yesen Zhu ◽  
Xiaona Wang ◽  
Yi Huang
Author(s):  
Ali Keshavarz ◽  
Andrew K. Ali ◽  
Randy K. Lall

Flow-accelerated corrosion (FAC) is a phenomenon that results in metal loss from piping, vessels and equipment made of carbon steel. This metal loss can lead to stress to occur at the steam inlet nozzle side, where it is located at the side of the deaerator. This paper presents a method to find the thickness critical of the steam inlet nozzle. A Finite Element (FE) model of the pressure vessel head was created to perform a stress analysis using NX Nastran 5.0. By applying materials properties, loads and constraints to the model, the results obtained are required to satisfy the following criterion: vonMises≥SySy=YieldStrength The results obtained from the stress analysis were analyzed to obtain a corrosion allowance and it was compared to the recommended value from a normal deaerator design, which is roughly 0.25 inches. From the FE model, and by continuously reducing the thickness of the nozzle, it was determined that the corrosion allowance is 0.229 inches, and that the percentage error was 8.4%.


2012 ◽  
Vol 252 ◽  
pp. 52-67 ◽  
Author(s):  
Wael H. Ahmed ◽  
Mufatiu M. Bello ◽  
Meamer El Nakla ◽  
Abdelsalam Al Sarkhi

Author(s):  
John M. Pietralik ◽  
Chris S. Schefski

The three groups of parameters that affect flow-accelerated corrosion (FAC) are flow conditions, water chemistry, and materials. Nuclear power plant (NPP) data and laboratory tests confirm that under alkaline water chemistry there is a close relationship between local flow conditions and FAC rates in piping components. The knowledge of local flow effects can be useful for developing targeted inspection plans for piping components, predicting the location of the highest FAC rate for a given piping component, and determining what piping components should be replaced. A similar evaluation applies also to FAC in heat transfer equipment such as heat exchangers and steam generators. The objective of this paper is to examine the role of flow and mass transfer in bends under FAC conditions. Bends experience increased FAC rates compared to straight pipes, and are the most common components in piping systems. When the flow effects are dominant, the FAC rate is proportional to the mass flux of ferrous ions, which, in turn, is proportional to the mass transfer coefficient in the flowing water. The mass transfer coefficient describes the intensity of the transport of corrosion products (ferrous ions) from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of the FAC rate. The current paper presents plant and laboratory evidence of the relationship between local mass transfer conditions and the FAC rate in bends. It shows correlations for mass transfer coefficients in bends and reviews the most important flow parameters affecting the mass transfer coefficient. The role of bend geometry and, in particular, the short and long radii, surface roughness, wall shear stress, and local turbulence is discussed. Computational fluid dynamics calculations and plant artefact measurements for short-radius and long radius bends are presented. The effect of the close proximity of two bends on FAC rate is also examined based on CANDU™ NPP inspection data and compared with literature data.


2014 ◽  
Vol 39 (8) ◽  
pp. 6435-6451 ◽  
Author(s):  
Rani Hari Ponnamma ◽  
Divya Teegala ◽  
Sahaya Ravi Ranjan ◽  
Vivekananda Kain ◽  
Barua Dipak Kumar

2012 ◽  
Vol 429 (1-3) ◽  
pp. 226-232 ◽  
Author(s):  
J.L. Singh ◽  
Umesh Kumar ◽  
N. Kumawat ◽  
Sunil Kumar ◽  
Vivekanand Kain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document