scholarly journals Simulated Study and Surface Passivation of Lithium Fluoride-Based Electron Contact for High-Efficiency Silicon Heterojunction Solar Cells

Author(s):  
Muhammad Quddammah Khokhar ◽  
Shahzad Qamar Hussain ◽  
Sanchari Chowdhury ◽  
Muhammad Aleem Zahid ◽  
Pham Duy Phong ◽  
...  

Abstract Numerical simulation and experimental techniques were used to investigate lithium fluoride (LiFx) films as an electron extraction layer for the application of silicon heterojunction (SHJ) solar cells, with a focus on the paths toward excellent surface passivation and superior efficiency. The presence of a 7 nm thick hydrogenated intrinsic amorphous silicon (a-Si:H(i)) passivation layer along with thermally evaporated 4 nm thick LiFx resulted in outstanding passivation properties and suppresses the recombination of carriers. As a result, minority carrier lifetime (τeff) as well as implied open-circuit voltage (iVoc) reached up 933 μs and iVoc of 734 mV, accordingly at 120°C annealing temperature. A detailed simulated study was performed for the complete LiFx based SHJ solar cells to achieve superior efficiency. Optimized performance of SHJ solar cells using a LiFx layer thickness of 4 nm with energy bandgap (Eg) of 10.9 eV and the work function of 3.9 eV was shown as: Voc=745.7 mV, Jsc=38.21 mA/cm2, FF=82.17%, and =23.41%. Generally, our work offers an improved understanding of the passivation layer, electron extraction layer, and their combined effects on SHJ solar cells via simulation.

Author(s):  
Manas R. Samantaray ◽  
Prashant Kumar Gautam ◽  
Dhriti Sundar Ghosh ◽  
Nikhil Chander

Abstract Carrier selective contacts (CSC) have the potential to lower the cost of photovoltaic (PV) cells. In the present work p-Si/TiO2 heterojunction solar cells have been fabricated using titanium dioxide (TiO2) as an electron-selective layer. Thin uniform anatase TiO2 films have been deposited using a commercially viable spray deposition technique over large area Si substrates. With a simple architecture of Al (200 nm fingers)/Al (15 nm thin film)/TiO2/c-Si(p)/Ag (200 nm), a highest conversion efficiency of 1.56 % has been achieved for the TiO2 carrier selective contact based solar cell with an active area of ~3.84 cm2. The minority carrier lifetime value of the TiO2 coated Si wafer was found to be less than that of the uncoated wafer, indicating the inability of the anatase TiO2 layer to provide surface passivation. Suns-VOC measurements yielded comparable values of the implied open circuit voltage for both the uncoated and the TiO2 coated Si wafers. Spray deposition technique can be used for scalable fabrication of carrier selective contact based heterojunction solar cells.


Green ◽  
2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Stefaan De Wolf ◽  
Antoine Descoeudres ◽  
Zachary C. Holman ◽  
Christophe Ballif

AbstractSilicon heterojunction solar cells consist of thin amorphous silicon layers deposited on crystalline silicon wafers. This design enables energy conversion efficiencies above 20% at the industrial production level. The key feature of this technology is that the metal contacts, which are highly recombination active in traditional, diffused-junction cells, are electronically separated from the absorber by insertion of a wider bandgap layer. This enables the record open-circuit voltages typically associated with heterojunction devices without the need for expensive patterning techniques. This article reviews the salient points of this technology. First, we briefly elucidate device characteristics. This is followed by a discussion of each processing step, device operation, and device stability and industrial upscaling, including the fabrication of solar cells with energy-conversion efficiencies over 21%. Finally, future trends are pointed out.


ENERGYO ◽  
2018 ◽  
Author(s):  
Stefaan De Wolf ◽  
Antoine Descoeudres ◽  
Zachary C. Holman ◽  
Christophe Ballif

Sign in / Sign up

Export Citation Format

Share Document