Minority carrier lifetime of silicon wafer passivated by PECVD amorphous silicon layers for silicon heterojunction solar cells

Author(s):  
Min Gu Kang ◽  
Sung Ju Tark ◽  
Joon Sung Lee ◽  
Jeong Chul Lee ◽  
Kyung Hoon Yoon ◽  
...  
AIP Advances ◽  
2013 ◽  
Vol 3 (5) ◽  
pp. 052119 ◽  
Author(s):  
Sabina Abdul Hadi ◽  
Pouya Hashemi ◽  
Nicole DiLello ◽  
Evelina Polyzoeva ◽  
Ammar Nayfeh ◽  
...  

2015 ◽  
Vol 1770 ◽  
pp. 7-12 ◽  
Author(s):  
Henriette A. Gatz ◽  
Yinghuan Kuang ◽  
Marcel A. Verheijen ◽  
Jatin K. Rath ◽  
Wilhelmus M.M. (Erwin) Kessels ◽  
...  

ABSTRACTSilicon heterojunction solar cells (SHJ) with thin intrinsic layers are well known for their high efficiencies. A promising way to further enhance their excellent characteristics is to enable more light to enter the crystalline silicon (c-Si) absorber of the cell while maintaining a simple cell configuration. Our approach is to replace the amorphous silicon (a-Si:H) emitter layer with a more transparent nanocrystalline silicon oxide (nc-SiOx:H) layer. In this work, we focus on optimizing the p-type nc-SiOx:H material properties, grown by radio frequency plasma enhanced chemical vapor deposition (rf PECVD), on an amorphous silicon layer.20 nm thick nanocrystalline layers were successfully grown on a 5 nm a-Si:H layer. The effect of different ratios of trimethylboron to silane gas flow rates on the material properties were investigated, yielding an optimized material with a conductivity in the lateral direction of 7.9×10-4 S/cm combined with a band gap of E04 = 2.33 eV. Despite its larger thickness as compared to a conventional window a-Si:H p-layer, the novel layer stack of a-Si:H(i)/nc-SiOx:H(p) shows significantly enhanced transmission compared to the stack with a conventional a-Si:H(p) emitter. Altogether, the chosen material exhibits promising characteristics for implementation in SHJ solar cells.


1995 ◽  
Vol 403 ◽  
Author(s):  
R. Venkatasubramanian ◽  
B. O'Quinn ◽  
J. S. Hills ◽  
M. L. Timmons ◽  
D. P. Malta

AbstractThe characterization of MOCVD-grown GaAs-AlGaAs materials and GaAs p+n junctions on poly-Ge substrates is presented. Minority carrier lifetime in GaAs-AIGaAs double-hetero (DH) structures grown on these substrates and the variation of lifetimes across different grainstructures are discussed. Minority-carrier diffusion lengths in polycrystalline GaAs p+-n junctions were evaluated by cross-sectional electron-beam induced current (EBIC) scans. The junctions were also studied by plan-view EBIC imaging. Optimization studies of GaAs solar cell on poly-Ge are discussed briefly. The effect of various polycrystalline substrate-induced defects on performance of GaAs solar cells are presented.


2014 ◽  
Vol 60 ◽  
pp. 181-190
Author(s):  
M. Daanoune ◽  
D. Kohen ◽  
A. Kaminski-Cachopo ◽  
C. Morin ◽  
P. Faucherand ◽  
...  

2007 ◽  
Vol 131-133 ◽  
pp. 1-8 ◽  
Author(s):  
Nathan Stoddard ◽  
Bei Wu ◽  
Ian Witting ◽  
Magnus C. Wagener ◽  
Yongkook Park ◽  
...  

A novel crystal growth method has been developed for the production of ingots, bricks and wafers for solar cells. Monocrystallinity is achievable over large volumes with minimal dislocation incorporation. The resulting defect types, densities and interactions are described both microscopically for wafers and macroscopically for the ingot, looking closely at the impact of the defects on minority carrier lifetime. Solar cells of 156 cm2 size have been produced ranging up to 17% in efficiency using industrial screen print processes.


Sign in / Sign up

Export Citation Format

Share Document