Long-Term Study of MIEC Cathodes for Intermediate Temperature Solid Oxide Fuel Cells

2019 ◽  
Vol 25 (2) ◽  
pp. 2381-2390 ◽  
Author(s):  
Cornelia Endler ◽  
André Leonide ◽  
André Weber ◽  
Frank Tietz ◽  
Ellen Ivers-Tiffée

2018 ◽  
Vol 215 ◽  
pp. 01026
Author(s):  
Adi Subardi ◽  
Yen-Pei Fu

SmBaCo2O5+δ (SBC) was studied as cathode material for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The crystal structure, thermal expansion behavior, and electrochemical performance with long-term operation of SBC were characterized. An orthorhombic layered perovskite structure was observed in SBC cathode by a GSAS program for refinement. The average thermal expansion coefficient (TEC) is 21.6 x 10-6K-1 in the temperature range of 100oC-800oC. For long-term testing, the polarization resistance of SBC cathode increases gradually from 25.77 Ω cm2 for 2 h to 38.77 Ω cm2 for 96 h at 600°C, and an increasing-rate for polarization resistance is around 13,8% h-1. Based on the electrochemical properties, SBC cathode with mixed ionic and electronic conductor (MIEC) behavior is a potential cathode for intermediate temperature solid oxide fuel cells based on a SDC electrolyte.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kaiming Cheng ◽  
Huixia Xu ◽  
Lijun Zhang ◽  
Jixue Zhou ◽  
Xitao Wang ◽  
...  

AbstractThe Ce0.8Gd0.2O2−δ (CGO) interlayer is commonly applied in solid oxide fuel cells (SOFCs) to prevent chemical reactions between the (La1−xSrx)(Co1−yFey)O3−δ (LSCF) oxygen electrode and the Y2O3-stabilized ZrO2 (YSZ) electrolyte. However, formation of the YSZ–CGO solid solution with low ionic conductivity and the SrZrO3 (SZO) insulating phase still happens during cell production and long-term operation, causing poor performance and degradation. Unlike many experimental investigations exploring these phenomena, consistent and quantitative computational modeling of the microstructure evolution at the oxygen electrode–electrolyte interface is scarce. We combine thermodynamic, 1D kinetic, and 3D phase-field modeling to computationally reproduce the element redistribution, microstructure evolution, and corresponding ohmic loss of this interface. The influences of different ceramic processing techniques for the CGO interlayer, i.e., screen printing and physical laser deposition (PLD), and of different processing and long-term operating parameters are explored, representing a successful case of quantitative computational engineering of the oxygen electrode–electrolyte interface in SOFCs.


Author(s):  
A. A. Solovyev ◽  
A. V. Shipilova ◽  
I. V. Ionov ◽  
E. A. Smolyanskiy ◽  
A. V. Nikonov ◽  
...  

2021 ◽  
pp. 160444
Author(s):  
S.U. Costilla-Aguilar ◽  
M.I. Pech-Canul ◽  
M.J. Escudero ◽  
R.F. Cienfuegos-Pelaes ◽  
J.A. Aguilar-Martínez

Sign in / Sign up

Export Citation Format

Share Document