Influence of Particle Surface Potential on Electrocodeposition of BaSO4: a ζ-potential Study

2019 ◽  
Vol 25 (27) ◽  
pp. 69-79
Author(s):  
Dimitri Soccol ◽  
Christian Ntumba Ngoy ◽  
Serge Claessens ◽  
Jan Fransaer

2011 ◽  
Vol 328-330 ◽  
pp. 547-550
Author(s):  
Gang Zheng ◽  
Ru Min Wang ◽  
Gao Yang Zhao ◽  
Zhong Yu

In this study, by using UV-visible adsorption spectrophotometer, ζ-potential analyzer and X-ray photo spectroscopy, the adsorption characteristics and surface electrochemical properties of WPS were studied in comparison with traditional naphthalene sulfonated formaldehyde condensates (FDN) whose dispersion ability mainly depends on electrostatic repulsive forces. WPS was prepared through free radical copolymerization in self-Single screw reactive extruder and synthesized from waste plexiglas and vinyl monomers by way of special extrusion modification. The results show that the adsorption of WPS and FDN on cement particle surface approximately conforms to Langmuir’s adsorption isotherm. The adsorption of WPS belongs to physical adsorption and its saturated adsorbed quantity was 5.38mg/g. When the dosage of WPS was 1 wt.% of cement, the thickness of the adsorption layer on the surface of cement particles was 61.2 nm. The ζ-potential of cement particle with WPS changed from positive (15 mV) to negative (-64.74mV) with its concentration increasing from 0 to 20 g/L and decreased from -65.19 to-39.82 mV (reducing by 38.9%) with its concentration of 10 g/L within 60 h.


2021 ◽  
Author(s):  
◽  
Eva Weatherall

<p>Tunable resistive pulse sensing (TRPS) is a particle-by-particle analysis technique combining the Coulter principle with size-tunable pores. TRPS can be used to characterize biological and synthetic particles 50 nm - 20 µm in diameter. Information is obtained from the resistive pulse signal, a transient change in ionic current observed when a particle passes through the pore. TRPS has been shown to provide excellent resolution and accuracy for measuring particle size and concentration as well as providing information about particle charge. TRPS is therefore applicable to many industrial and fundamental research areas involving aptamers, drug delivery particles, extracellular vesicles and other biological particle types. Advancement of this technology requires a better understanding of the technique, particularly in the area of particle surface charge measurement and this Thesis helps to provide that understanding.  In this work, firstly particle ζ-potential measurement using TRPS was investigated. A number of different measurement methods are presented and the uncertainties associated with each method are outlined. The ζ-potential for a variety of particles with different surface charges were measured in a range of electrolytes.  Particle ζ-potential measurements were then improved upon with the addition of streaming potential measurements to measure the pore surface charge. The ζ-potential of the pore surface, which makes a significant contribution to particle ζ-potential calculations, was measured using a set up which works alongside the qNano. Streaming potential measurements were also used to investigate changes in the pore surface charge following application of number of different chemical coatings. The volume of data collected and detail of analysis in this work (including uncertainties) is unprecedented in TRPS ζ potential measurements.  Biphasic pulses arising from the charge on the particles were investigated. The pulse is conventionally resistive, but biphasic pulses which include both resistive and conductive components are significant for less than 50 mM salt concentrations when measuring 200 nm particles. The experimental variables investigated include the concentration of the electrolyte, particle charge, pore size, applied voltage, and the direction of particlemotion. Conductive pulse size was seen to decrease with increasing electrolyte concentration and pore size and increase with applied voltage. A linear relationship was found between conductive pulse magnitude and particle surface group density. The influence of direction of motion on conductive pulses was consistent with concentration polarization of an ion selective pore. Biphasic pulses were also seen to affect conventional TRPS particle size measurements.  Finally, size distribution broadening due to varying particle trajectories was investigated. Pulse size distributions for monodisperse particles became broader when the pore size was increased and featured two distinct peaks. Relatively large pulses are produced by particles with trajectories passing near to the edge of the pore. Other experiments determined that pulse size distributions are independent of applied voltage but broaden with increasing pressure applied across the membrane.</p>


Langmuir ◽  
2000 ◽  
Vol 16 (17) ◽  
pp. 6795-6800 ◽  
Author(s):  
Pablo Taboada ◽  
Victor Mosquera ◽  
Juan M. Ruso ◽  
Felix Sarmiento ◽  
Malcolm N. Jones

2021 ◽  
Author(s):  
◽  
Eva Weatherall

<p>Tunable resistive pulse sensing (TRPS) is a particle-by-particle analysis technique combining the Coulter principle with size-tunable pores. TRPS can be used to characterize biological and synthetic particles 50 nm - 20 µm in diameter. Information is obtained from the resistive pulse signal, a transient change in ionic current observed when a particle passes through the pore. TRPS has been shown to provide excellent resolution and accuracy for measuring particle size and concentration as well as providing information about particle charge. TRPS is therefore applicable to many industrial and fundamental research areas involving aptamers, drug delivery particles, extracellular vesicles and other biological particle types. Advancement of this technology requires a better understanding of the technique, particularly in the area of particle surface charge measurement and this Thesis helps to provide that understanding.  In this work, firstly particle ζ-potential measurement using TRPS was investigated. A number of different measurement methods are presented and the uncertainties associated with each method are outlined. The ζ-potential for a variety of particles with different surface charges were measured in a range of electrolytes.  Particle ζ-potential measurements were then improved upon with the addition of streaming potential measurements to measure the pore surface charge. The ζ-potential of the pore surface, which makes a significant contribution to particle ζ-potential calculations, was measured using a set up which works alongside the qNano. Streaming potential measurements were also used to investigate changes in the pore surface charge following application of number of different chemical coatings. The volume of data collected and detail of analysis in this work (including uncertainties) is unprecedented in TRPS ζ potential measurements.  Biphasic pulses arising from the charge on the particles were investigated. The pulse is conventionally resistive, but biphasic pulses which include both resistive and conductive components are significant for less than 50 mM salt concentrations when measuring 200 nm particles. The experimental variables investigated include the concentration of the electrolyte, particle charge, pore size, applied voltage, and the direction of particlemotion. Conductive pulse size was seen to decrease with increasing electrolyte concentration and pore size and increase with applied voltage. A linear relationship was found between conductive pulse magnitude and particle surface group density. The influence of direction of motion on conductive pulses was consistent with concentration polarization of an ion selective pore. Biphasic pulses were also seen to affect conventional TRPS particle size measurements.  Finally, size distribution broadening due to varying particle trajectories was investigated. Pulse size distributions for monodisperse particles became broader when the pore size was increased and featured two distinct peaks. Relatively large pulses are produced by particles with trajectories passing near to the edge of the pore. Other experiments determined that pulse size distributions are independent of applied voltage but broaden with increasing pressure applied across the membrane.</p>


1993 ◽  
Vol 49 (s1) ◽  
pp. c322-c322
Author(s):  
F. Rustichelli ◽  
S. Dante ◽  
P. Mariani ◽  
I. V. Myagkov ◽  
V. I. Troitsky

1997 ◽  
Vol 30 (3) ◽  
pp. 195-206 ◽  
Author(s):  
Roger F.G. Brown ◽  
Christopher Carr ◽  
Michael E. Taylor

Sign in / Sign up

Export Citation Format

Share Document