In Vivo Near-Infrared Auto-Fluorescence Imaging of Pigmented Skin Lesions: Methods and Preliminary Clinical Results

2020 ◽  
Author(s):  
Mubin He ◽  
Di Wu ◽  
Yuhuang Zhang ◽  
Xiaoxiao Fan ◽  
Hui Lin ◽  
...  

AbstractFluorescence imaging performed in the 1500-1700 nm spectral range (labeled as near-infrared IIb, NIR-IIb) promises high imaging contrast and spatial resolution for its little photon scattering effect and minimum auto-fluorescence. Though inorganic and organic probes have been developed for NIR-IIb bioimaging, most are in preclinical stage, hampering further clinical application. Herein, we showed that indocyanine green (ICG), an US Food and Drug Administration (FDA)-approved agent, exhibited remarkable amount of NIR-IIb emission when dissolved into different protein solutions, including human serum albumin, rat bile, and fetal bovine serum. We performed fluorescence imaging in NIR-IIb window to visualize structures of lymph system, extrahepatic biliary tract and cerebrovascular. Results demonstrated that proteins promoted NIR-IIb emission of ICG in vivo and that NIR-IIb imaging with ICG preserved higher signal-to-background ratio (SBR) and spatial resolution compared with the conventional near-infrared II (NIR-II) fluorescence imaging. Our findings confirm that NIR-IIb fluorescence imaging can be successfully performed using the clinically approved agent ICG. Further clinical application in NIR-IIb region would hopefully be carried out with appropriate ICG-protein solutions.


Author(s):  
Pengrui Zhuang ◽  
Ke Xiang ◽  
Xiangxi Meng ◽  
Guohe Wang ◽  
Ziyuan Li ◽  
...  

A facile and green method was developed to fabricate Nd-DTPA on a large scale without byproducts for CT/spectral CT and NIR II fluorescence imaging of the gastrointestinal tract in vivo.


Immunobiology ◽  
2015 ◽  
Vol 220 (12) ◽  
pp. 1328-1336 ◽  
Author(s):  
Hua He ◽  
Xiaojie Tu ◽  
Juan Zhang ◽  
Desmond Omane Acheampong ◽  
Li Ding ◽  
...  

2012 ◽  
Vol 51 (39) ◽  
pp. 9818-9821 ◽  
Author(s):  
Guosong Hong ◽  
Joshua T. Robinson ◽  
Yejun Zhang ◽  
Shuo Diao ◽  
Alexander L. Antaris ◽  
...  

2018 ◽  
Vol 1862 (6) ◽  
pp. 1389-1400 ◽  
Author(s):  
Felista L. Tansi ◽  
Ronny Rüger ◽  
Ansgar M. Kollmeier ◽  
Markus Rabenhold ◽  
Frank Steiniger ◽  
...  

Author(s):  
Youliang Tian ◽  
Huiting Zhou ◽  
Quan Cheng ◽  
Huiping Dang ◽  
Hongyun Qian ◽  
...  

Fluorescence imaging in the second near-infrared window (NIR-II, 1000–1700 nm) holds great promise for in vivo imaging and imaging-guided phototherapy with deep penetration and high spatiotemporal resolution. It is very...


2019 ◽  
Vol 10 (4) ◽  
pp. 1219-1226 ◽  
Author(s):  
Jiacheng Lin ◽  
Xiaodong Zeng ◽  
Yuling Xiao ◽  
Lin Tang ◽  
Jinxia Nong ◽  
...  

Novel biocompatible NIR-II aggregation-induced emission dots are facilely assembled and used for NIR-II biomedical fluorescence imaging.


Nanomedicine ◽  
2019 ◽  
Vol 14 (17) ◽  
pp. 2273-2292 ◽  
Author(s):  
Qian Li ◽  
Mengmeng Hou ◽  
Junjie Ren ◽  
Shiyu Lu ◽  
Zhigang Xu ◽  
...  

Aim: Hollow mesoporous copper sulfide nanocapsules conjugated with poly(ethylene glycol) (PEG), doxorubicin and chlorin e6 (HPDC) were synthesized for fluorescence imaging and multimodal tumor therapy. Materials & methods: HPDC were synthesized by encapsulating chlorin e6 and doxorubicin into PEGylated nanocapsules via a simple precipitation method. The photothermal/photodynamic effects, drug release, cellular uptake, imaging capacities and antitumor effects of the HPDCs were evaluated. Results: This smart nanoplatform is stimulus-responsive toward an acidic microenvironment and near infrared laser irradiation. Moreover, fluorescence imaging-guided and combined photothermal/photodynamic/chemotherapies of tumors were promoted under laser activation and led to efficient tumor ablation, as evidenced by exploring animal models in vivo. Conclusion: HPDCs are expected to serve as potent and reliable nanoagents for achieving superior therapeutic outcomes in cancer management.


Sign in / Sign up

Export Citation Format

Share Document