Organic Electrode Materials, a New Opportunity for Low Cost and High Power Lithium Battery?

Author(s):  
Kathryn Holguin ◽  
Motahareh Mohammadiroudbari ◽  
Kaiqiang Qin ◽  
Chao Luo

Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials...


Research ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Tao Sun ◽  
Zong-Jun Li ◽  
Xin-Bo Zhang

Organic electrode materials are receiving ever-increasing research interest due to their combined advantages, including resource renewability, low cost, and environmental friendliness. However, their practical applications are still terribly plagued by low conductivity, poor rate capability, solubility in electrolyte, and low density/utilization of active groups. In response, herein, as a proof-of-concept experiment, C=N and C=O bonds are synergically integrated into the backbone of pentacene to finely tune the electronic structures of pentacene. Unexpectedly, the firstly obtained unique 5,7,11,14-tetraaza-6,13-pentacenequinone/reduced graphene oxide (TAPQ/RGO) composite exhibits superior electrochemical performances, including an ultra-stable cycling stability (up to 2400 cycles) and good rate capability (174 mAh g−1 even at a high current density of 3.2 A g−1), which might be attributed to the abundant active groups, π-conjugated molecular structure, leaf-like morphology, and the interaction between TAPQ and graphene.


2021 ◽  
pp. 100008
Author(s):  
Cara N. Gannett ◽  
Luis Melecio-Zambrano ◽  
Monica Jo Theibault ◽  
Brian M. Peterson ◽  
Brett P. Fors ◽  
...  

Author(s):  
Mingtan Wang ◽  
Wenjing Lu ◽  
Huamin Zhang ◽  
Xianfeng Li

Abstract The demands for high-performance and low-cost batteries make K-ion batteries (KIBs) considered as promising supplements or alternatives for Li-ion batteries (LIBs). Nevertheless, there are only a small amount of conventional inorganic electrode materials that can be used in KIBs, due to the large radius of K+ ions. Differently, organic electrode materials (OEMs) generally own sufficiently interstitial space and good structure flexibility, which can maintain superior performance in K-ion systems. Therefore, in recent years, more and more investigations have been focused on OEMs for KIBs. This review will comprehensively cover the researches on OEMs in KIBs in order to accelerate the research and development of KIBs. The reaction mechanism, electrochemical behavior, etc., of OEMs will all be summarized in detail and deeply. Emphasis is placed to overview the performance improvement strategies of OEMs and the characteristic superiority of OEMs in KIBs compared with LIBs and Na-ion batteries.


2018 ◽  
Vol 6 (48) ◽  
pp. 24869-24876 ◽  
Author(s):  
Junru Wang ◽  
Feng Li ◽  
Yuanyuan Qu ◽  
Yang Liu ◽  
Yanmei Yang ◽  
...  

Organic electrode materials for rechargeable alkali-metal ion batteries have drawn increasing interest in recent years because of their distinctive advantages including low cost, environmental friendliness, and safety.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zirui Lin ◽  
Hua-Yu Shi ◽  
Lu Lin ◽  
Xianpeng Yang ◽  
Wanlong Wu ◽  
...  

AbstractRechargeable aqueous zinc-organic batteries are promising energy storage systems with low-cost aqueous electrolyte and zinc metal anode. The electrochemical properties can be systematically adjusted with molecular design on organic cathode materials. Herein, we use a symmetric small molecule quinone cathode, tetraamino-p-benzoquinone (TABQ), with desirable functional groups to protonate and accomplish dominated proton insertion from weakly acidic zinc electrolyte. The hydrogen bonding network formed with carbonyl and amino groups on the TABQ molecules allows facile proton conduction through the Grotthuss-type mechanism. It guarantees activation energies below 300 meV for charge transfer and proton diffusion. The TABQ cathode delivers a high capacity of 303 mAh g−1 at 0.1 A g−1 in a zinc-organic battery. With the increase of current density to 5 A g−1, 213 mAh g−1 capacity is still preserved with stable cycling for 1000 times. Our work proposes an effective approach towards high performance organic electrode materials.


Sign in / Sign up

Export Citation Format

Share Document