Reversible Assembly of Colloidal Particles Using Low Frequency Pulsed DC Electric Fields

2001 ◽  
Vol 114 (8) ◽  
pp. 1515-1520 ◽  
Author(s):  
A.J. Rosenspire ◽  
A.L. Kindzelskii ◽  
H.R. Petty

Previously, we have demonstrated that NAD(P)H levels in neutrophils and macrophages are oscillatory. We have also found that weak ultra low frequency AC or pulsed DC electric fields can resonate with, and increase the amplitude of, NAD(P)H oscillations in these cells. For these cells, increased NAD(P)H amplitudes directly signal changes in behavior in the absence of cytokines or chemotactic factors. Here, we have studied the effect of pulsed DC electric fields on HT-1080 fibrosarcoma cells. As in neutrophils and macrophages, NAD(P)H levels oscillate. We find that weak (~10(-)(5) V/m), but properly phased DC (pulsed) electric fields, resonate with NAD(P)H oscillations in polarized and migratory, but not spherical, HT-1080 cells. In this instance, electric field resonance signals an increase in HT-1080 pericellular proteolytic activity. Electric field resonance also triggers an immediate increase in the production of reactive oxygen metabolites. Under resonance conditions, we find evidence of DNA damage in HT-1080 cells in as little as 5 minutes. Thus the ability of external electric fields to effect cell function and physiology by acting on NAD(P)H oscillations is not restricted to cells of the hematopoietic lineage, but may be a universal property of many, if not all polarized and migratory eukaryotic cells.


Author(s):  
Xin Huang ◽  
Limin He ◽  
Xiaoming Luo ◽  
Ke Xu ◽  
Yuling Lü ◽  
...  

Author(s):  
Kshitiz Gupta ◽  
Dong Hoon Lee ◽  
Steven T. Wereley ◽  
Stuart J. Williams

Colloidal particles like polystyrene beads and metallic micro and nanoparticles are known to assemble in crystal-like structures near an electrode surface under both DC and AC electric fields. Various studies have shown that this self-assembly is governed by a balance between an attractive electrohydrodynamic (EHD) force and an induced dipole-dipole repulsion (Trau et al., 1997). The EHD force originates from electrolyte flow caused by interaction between the electric field and the polarized double layers of both the particles and the electrode surface. The particles are found to either aggregate or repel from each other on application of electric field depending on the mobility of the ions in the electrolyte (Woehl et al., 2014). The particle motion in the electrode plane is studied well under various conditions however, not as many references are available in the literature that discuss the effects of the AC electric field on their out-of-plane motion, especially at high frequencies (>10 kHz). Haughey and Earnshaw (1998), and Fagan et al. (2005) have studied the particle motion perpendicular to the electrode plane and their average height from the electrode mostly in presence of DC or low frequency AC (<1 kHz) electric field. However, these studies do not provide enough insight towards the effects of high frequency (>10 kHz) electric field on the particles’ motion perpendicular to the electrode plane.  


Author(s):  
Bing-Bing Wang ◽  
Xiao-Dong Wang ◽  
Tian-Hu Wang ◽  
Gui Lu ◽  
Wei-Mon Yan

In static and low-frequency electric fields, colloidal particles in suspension tend to associate into ‘strings’ or ‘pearl chains’ along the field lines. A phenomenon has been observed in which, under long duration alternating electric fields, colloidal particles in aqueous or conducting media exhibit an electrodynamic instability in which they gather into high concentration ‘bands’ which run essentially perpendicular to the applied field vector. A detailed study is catalogued herein for aqueous suspensions of the discotic mineral kaolinite. A theory has been developed, which embraces the ‘pearl chain’ and ‘band’ formations, demonstrating that one can be formed from the other with increasing frequency and field strength and illustrating the dependence of band formation on electrophoretic mobility as observed in related electro-optical experiments. The value of the phenomenon as a mechanism for concentrating dispersed colloidal particles into regions of very high local density is apparent.


Sign in / Sign up

Export Citation Format

Share Document