Pulsed DC electric fields couple to natural NAD(P)H oscillations in HT-1080 fibrosarcoma cells

2001 ◽  
Vol 114 (8) ◽  
pp. 1515-1520 ◽  
Author(s):  
A.J. Rosenspire ◽  
A.L. Kindzelskii ◽  
H.R. Petty

Previously, we have demonstrated that NAD(P)H levels in neutrophils and macrophages are oscillatory. We have also found that weak ultra low frequency AC or pulsed DC electric fields can resonate with, and increase the amplitude of, NAD(P)H oscillations in these cells. For these cells, increased NAD(P)H amplitudes directly signal changes in behavior in the absence of cytokines or chemotactic factors. Here, we have studied the effect of pulsed DC electric fields on HT-1080 fibrosarcoma cells. As in neutrophils and macrophages, NAD(P)H levels oscillate. We find that weak (~10(-)(5) V/m), but properly phased DC (pulsed) electric fields, resonate with NAD(P)H oscillations in polarized and migratory, but not spherical, HT-1080 cells. In this instance, electric field resonance signals an increase in HT-1080 pericellular proteolytic activity. Electric field resonance also triggers an immediate increase in the production of reactive oxygen metabolites. Under resonance conditions, we find evidence of DNA damage in HT-1080 cells in as little as 5 minutes. Thus the ability of external electric fields to effect cell function and physiology by acting on NAD(P)H oscillations is not restricted to cells of the hematopoietic lineage, but may be a universal property of many, if not all polarized and migratory eukaryotic cells.

Author(s):  
Xin Huang ◽  
Limin He ◽  
Xiaoming Luo ◽  
Ke Xu ◽  
Yuling Lü ◽  
...  

Soft Matter ◽  
2018 ◽  
Vol 14 (34) ◽  
pp. 6974-6982 ◽  
Author(s):  
Paramesh Gadige ◽  
Ranjini Bandyopadhyay

Liquid-like aqueous colloidal LAPONITE® clay suspensions rapidly transform into soft solids due to the application of DC electric fields.


2010 ◽  
Vol 6 (1) ◽  
pp. 31 ◽  
Author(s):  
Cristina Peratta ◽  
Andres Peratta ◽  
Dragan Poljak

The paper introduces a three dimensional multidomainboundary element model of a pregnant woman and foetus for the analysis of exposure to high voltage extremely low frequency electric fields. The definition of the differentphysical and geometrical properties of the relevant tissues is established according to medical information available in existing literature. The model takes into account changes in geometry, body mass, body fat, and overall chemical composition in the body which influence the electrical properties, throughout the different gestational periods. The developed model is used to solve the case of exposure to overhead power transmission lines at different stages of pregnancy including weeks 8, 13, 26 and 38. The results obtained are in line with those published in the earlier works considering different approaches. In addition, a sensitivity analysis involving varying scenarios of conductivity, foetus postures and geometry for each stage is defined and solved. Finally, a correlation between the externally applied electric field and the current density inside the foetus is established and the zones of maximum exposure are identified.


2014 ◽  
Vol 28 (18) ◽  
pp. 1450114 ◽  
Author(s):  
Yanqiu Che ◽  
Huiyan Li ◽  
Chunxiao Han ◽  
Xile Wei ◽  
Bin Deng ◽  
...  

In this paper, the effects of external DC electric fields on the neuro-computational properties are investigated in the context of Morris–Lecar (ML) model with bifurcation analysis. We obtain the detailed bifurcation diagram in two-dimensional parameter space of externally applied DC current and trans-membrane potential induced by external DC electric field. The bifurcation sets partition the two-dimensional parameter space in terms of the qualitatively different behaviors of the ML model. Thus the neuron's information encodes the stimulus information, and vice versa, which is significant in neural control. Furthermore, we identify the electric field as a key parameter to control the transitions among four different excitability and spiking properties, which facilitates the design of electric fields based neuronal modulation method.


1980 ◽  
Vol 239 (5) ◽  
pp. R424-R427 ◽  
Author(s):  
A. A. Marino ◽  
J. M. Cullen ◽  
M. Reichmanis ◽  
R. O. Becker ◽  
F. X. Hart

The action of a 60-Hz, 5 kV/m electric field on erythrocyte parameters in mice was determined. No effects attributable to the magnitude of the field were found, but a transition either from or to an environment containing the field caused decreased red blood cell concentrations and decreased hematocrits. The failure of others to observe effects on erythrocyte parameters following exposure to low-frequency electric fields may have been due to an inappropriate choice of duration of exposure.


Author(s):  
Feng Chen ◽  
Yao Peng ◽  
Yaozu Song ◽  
Min Chen

The deformation of nitrogen bubbles in transformer oil with various DC electric fields was studied experimentally and theoretically. The bubble deformation was visualized by a high-speed digital camera. The major axis of the bubble was elongated along the direction parallel to the applied electric field, with the elongation increasing as the electric field magnitude increased. The electrical Weber number (We) was used to correlate the electric field magnitude and the electric permittivity of the working fluid to the bubble aspect ratio (AR). The experimental results indicate that the bubble aspect ratio increases with increasing We. The total electrical stresses were calculated on an actual bubble shape including the electrostriction stresses.


Author(s):  
Kshitiz Gupta ◽  
Dong Hoon Lee ◽  
Steven T. Wereley ◽  
Stuart J. Williams

Colloidal particles like polystyrene beads and metallic micro and nanoparticles are known to assemble in crystal-like structures near an electrode surface under both DC and AC electric fields. Various studies have shown that this self-assembly is governed by a balance between an attractive electrohydrodynamic (EHD) force and an induced dipole-dipole repulsion (Trau et al., 1997). The EHD force originates from electrolyte flow caused by interaction between the electric field and the polarized double layers of both the particles and the electrode surface. The particles are found to either aggregate or repel from each other on application of electric field depending on the mobility of the ions in the electrolyte (Woehl et al., 2014). The particle motion in the electrode plane is studied well under various conditions however, not as many references are available in the literature that discuss the effects of the AC electric field on their out-of-plane motion, especially at high frequencies (>10 kHz). Haughey and Earnshaw (1998), and Fagan et al. (2005) have studied the particle motion perpendicular to the electrode plane and their average height from the electrode mostly in presence of DC or low frequency AC (<1 kHz) electric field. However, these studies do not provide enough insight towards the effects of high frequency (>10 kHz) electric field on the particles’ motion perpendicular to the electrode plane.  


Sign in / Sign up

Export Citation Format

Share Document