(Invited) Structural Design Via Group Energy Materials for High-Efficient Photoelectrochemical Hydrogen Evolution Reaction

2021 ◽  
Author(s):  
He-qiang Chang ◽  
Guo-Hua Zhang ◽  
Kuo-Chih Chou

Abstract In order to evaluate the effect of precursors and synthesis strategies on catalytic ability of Mo2C in the hydrogen evolution reaction (HER), four kinds of Mo2C were synthesized using two kinds of MoO3 by two strategies. Compared with the one-step direct carbonization strategy, Mo2C with a large special surface area and a better performance could be synthesized by the two-step strategy composed of a nitridation reaction and a carbonization reaction. Additionally, the as-prepared porous Mo2C nanobelts (NBs) exhibit good electrocatalytic performance with a small overpotential of 165 mV (0.5 M H2SO4) and 124 mV (1 M KOH) at 10 mA cm-2, as well as a Tafel slope of 58 mV dec-1 (0.5 M H2SO4) and 59 mV dec-1 (1 M KOH). The excellent catalytic activity is ascribed to the nano crystallites and porous structure. What’s more, the belt structure also facilitates the charge transport in the materials during the electrocatalytic HER process. Therefore, the two-step strategy provides a new insight into the structural design with superior performance for electrocatalytic HER.


2019 ◽  
Author(s):  
◽  
Chi Zhang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] With the rapid growth of global population and societal development, nonrenewable energy sources such as fossil fuels are being consumed at an alarming rate. Meanwhile, the environment is faced with a grand challenge due to the exploitation, processing, and utilization of these traditional fossil fuels. Therefore, it is of great importance to develop renewable and sustainable energy strategies, including energy storage and conversion. Among them, electrolyzer, hydrogen-based fuel cell and metal air battery have drawn much attention due to their high-efficient, renewability, environment-friendly. However, at present their performances highly depend on the noble metals based electrocatalysts which are not only scarce but also expensive. In order to lower the cost of abovementioned devices and facilitate their large-scale applications, it is necessary to develop high-efficient, low cost and stable electrocatalysts. So far, much effort has been devoted to developing earth-abundant element based electrocatalysts or lowering the use of the noble metals without compromising performance. These materials are developed by synthesis methods based on wet chemistry, which unavoidably involves tedious experiment steps, harsh reaction conditions, and costly capital investment. This dissertation focuses on investigating the laser assisted fabrication of nanocatalysts under ambient conditions, and exploring their applications in energy conversion, especially electrochemical water splitting. In contrast to traditional laser synthesis of nanomaterials in liquid or in vacuum which suffers from low yield and expensive experimental instruments, the developed CO2 laser based nanomanufacturing method has greater potentials for mass production. Chapter 1 introduces current challenges of electrolyzer, hydrogen-based fuel cell, and metal air battery as well as the proposed and demonstrated solutions. Much attention is paid to discuss merits and demerits of these solutions. Chapter 2 presents the synthesis of graphene from coal via one step laser scribing as multifunctional materials for joule heater, supercapacitor, an electrochemical dopamine sensor, and electrocatalyst. Next, Chapter 3 discusses the synthesis of laser induced MoS2/carbon and explores its catalytic activity toward hydrogen evolution reaction. In Chapter 4, a novel synthesis method of electrocatalysts has been reported by using polyimide derived laser induced graphene (LIG) as a microreactor and support. The obtained Pt/LIG and FeNi3/Fe3O4/LIG show superior catalytic activity toward hydrogen evolution reaction and oxygen evolution reaction, respectively. Benefited from the flexibility of the polyimide film and the simple synthesis method, a laser assisted roll to roll manufacturing method which is compatible with existing industrial protocols is proposed. Finally, in Chapter 5, by applying methodology shown in Chapter 4, supermolecules were explored as a novel precursor to produce electrocatalysts with much improved the catalytic activity.


2020 ◽  
Vol 3 (7) ◽  
pp. 6270-6296 ◽  
Author(s):  
Qing Zhu ◽  
Yuanju Qu ◽  
Detao Liu ◽  
Kar Wei Ng ◽  
Hui Pan

Small ◽  
2018 ◽  
Vol 14 (25) ◽  
pp. 1800667 ◽  
Author(s):  
Chao Huang ◽  
Chaoran Pi ◽  
Xuming Zhang ◽  
Kang Ding ◽  
Ping Qin ◽  
...  

Author(s):  
Shanyong Chen ◽  
Shiyan Wang ◽  
Panpan Hao ◽  
Muhong Li ◽  
Yu Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document