Solvation Structure and Li-Ion Transport Properties of Highly Concentrated Sulfone-Based Electrolytes

2015 ◽  
Vol 3 (42) ◽  
pp. 21343-21350 ◽  
Author(s):  
Stefan Breuer ◽  
Denise Prutsch ◽  
Qianli Ma ◽  
Viktor Epp ◽  
Florian Preishuber-Pflügl ◽  
...  

Impedance spectroscopy measurements down to very low temperatures allowed for resolving bulk ion transport properties in highly conducting ceramic electrolytes.


2019 ◽  
Vol 3 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Fabian Sälzer ◽  
Lars Pateras Pescara ◽  
Felix Franke ◽  
Clemens Müller ◽  
Jacqueline Winkler ◽  
...  

2020 ◽  
Author(s):  
Yohandys Zulueta ◽  
Minh Tho Nguyen ◽  
James Dawson

<div> <div> <div> <p>Lithium stannate (Li2SnO3) is currently being considered as a material for electrode and electrode coating applications in Li-ion batteries. The intrinsic defect formation and Li-ion transport properties of Li2SnO3 doped with divalent and trivalent transition metal dopants (Mn, Fe, Co and Ni) are explored in this work using atomistic simulations. Defect formation simulations reveal that all divalent dopants occupy the Li site with charge compensation through Li vacancies. For trivalent doping, occupation of the Sn site is energetically preferred with charge compensation from Li interstitials. Molecular dynamics simulations reveal that divalent and trivalent dopants increase Li-ion diffusion and reduce its activation energy compared with the undoped system. We show that Li2SnO3 with Li excess or deficiency as a result of doping has improved lithium transport properties. This study highlights the substantial improvement in Li-ion diffusion of Li2SnO3 for both current commercial and next-generation Li-ion battery technologies that can be achieved through transition-metal doping. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Yohandys Zulueta ◽  
Minh Tho Nguyen ◽  
James Dawson

<div> <div> <div> <p>Lithium stannate (Li2SnO3) is currently being considered as a material for electrode and electrode coating applications in Li-ion batteries. The intrinsic defect formation and Li-ion transport properties of Li2SnO3 doped with divalent and trivalent transition metal dopants (Mn, Fe, Co and Ni) are explored in this work using atomistic simulations. Defect formation simulations reveal that all divalent dopants occupy the Li site with charge compensation through Li vacancies. For trivalent doping, occupation of the Sn site is energetically preferred with charge compensation from Li interstitials. Molecular dynamics simulations reveal that divalent and trivalent dopants increase Li-ion diffusion and reduce its activation energy compared with the undoped system. We show that Li2SnO3 with Li excess or deficiency as a result of doping has improved lithium transport properties. This study highlights the substantial improvement in Li-ion diffusion of Li2SnO3 for both current commercial and next-generation Li-ion battery technologies that can be achieved through transition-metal doping. </p> </div> </div> </div>


2019 ◽  
Vol 3 (7) ◽  
Author(s):  
Kartik Sau ◽  
Tamio Ikeshoji ◽  
Sangryun Kim ◽  
Shigeyuki Takagi ◽  
Kazuto Akagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document