(Invited) Magnetic Relaxation Nanoparticle Biosensor for Dosimetric, Longitudinal Biochemical Monitoring In Vivo

2020 ◽  
Vol MA2020-02 (67) ◽  
pp. 3408-3408
Author(s):  
Richard Murdock ◽  
Michael Cima
Author(s):  
Andrew Tsourkas ◽  
Lee Josephson ◽  
Ralph Weissleder

Recently, the field of activatable probes has been extended from fluorescence to magnetic resonance (MR). Magnetic relaxation switches take advantage of the change in T2 relaxation time that occurs upon binding of multiple bioconjugated superparamagnetic iron-oxide nanoparticles to a target. Here, we use a model system to detect biotinilated BSA using switchable magnetic particles. The presence of the biotinilated BSA results in the aggregation of nanoparticles and leas to a substantial decrease in the T2 relaxation time. Magnetic relaxation switches show great promise for clinical in vitro diagnostics and in vivo imaging since changes in T2 are independent of the sample medium. Tests can be performed in turbid solutions without loss of sensitivity, unlike with fluorescence measurements.


Hemoglobin ◽  
2005 ◽  
Vol 29 (3) ◽  
pp. 181-187 ◽  
Author(s):  
Adolfo Fernández García ◽  
Carlos Cabal ◽  
Jorge Losada ◽  
Eloy Álvarez ◽  
Catalina Soler ◽  
...  

2018 ◽  
Vol 218 (5) ◽  
pp. 528.e1-528.e18 ◽  
Author(s):  
Christine M. O’Brien ◽  
Elizabeth Vargis ◽  
Amy Rudin ◽  
James C. Slaughter ◽  
Giju Thomas ◽  
...  

2020 ◽  
Author(s):  
Shreyas Shah ◽  
Chun-Nam Yu ◽  
Mingde Zheng ◽  
Heejong Kim ◽  
Michael S. Eggleston

ABSTRACTAdvancing continuous health monitoring beyond vital signs to biochemistry will revolutionize personalized medicine. Herein, we report a novel platform to achieve remote biochemical monitoring using microparticle-based biosensors and optical coherence tomography (OCT). Stimuli-responsive, polymeric microparticles were designed to serve as freely-dispersible biorecognition units, wherein binding with a target biochemical induces volumetric changes of the microparticle. Analytical approaches to detect these sub-micron changes in 3D using OCT were devised by modeling the microparticle as an optical cavity, enabling estimations far below the resolution of the OCT system. As a proof of concept, we demonstrated the 3D spatiotemporal monitoring of glucose-responsive microparticles distributed throughout a tissue-mimic in response to dynamically-fluctuating levels of glucose. Deep learning was further implemented using 3D convolutional neural networks to automate the vast processing of the continuous stream of three-dimensional time series data, resulting in a robust end-to-end pipeline with immense potential for continuous in vivo biochemical monitoring.


Author(s):  
S. Phyllis Steamer ◽  
Rosemarie L. Devine

The importance of radiation damage to the skin and its vasculature was recognized by the early radiologists. In more recent studies, vascular effects were shown to involve the endothelium as well as the surrounding connective tissue. Microvascular changes in the mouse pinna were studied in vivo and recorded photographically over a period of 12-18 months. Radiation treatment at 110 days of age was total body exposure to either 240 rad fission neutrons or 855 rad 60Co gamma rays. After in vivo observations in control and irradiated mice, animals were sacrificed for examination of changes in vascular fine structure. Vessels were selected from regions of specific interest that had been identified on photomicrographs. Prominent ultrastructural changes can be attributed to aging as well as to radiation treatment. Of principal concern were determinations of ultrastructural changes associated with venous dilatations, segmental arterial stenosis and tortuosities of both veins and arteries, effects that had been identified on the basis of light microscopic observations. Tortuosities and irregularly dilated vein segments were related to both aging and radiation changes but arterial stenosis was observed only in irradiated animals.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
H. Engelhardt ◽  
R. Guckenberger ◽  
W. Baumeister

Bacterial photosynthetic membranes contain, apart from lipids and electron transport components, reaction centre (RC) and light harvesting (LH) polypeptides as the main components. The RC-LH complexes in Rhodopseudomonas viridis membranes are known since quite seme time to form a hexagonal lattice structure in vivo; hence this membrane attracted the particular attention of electron microscopists. Contrary to previous claims in the literature we found, however, that 2-D periodically organized photosynthetic membranes are not a unique feature of Rhodopseudomonas viridis. At least five bacterial species, all bacteriophyll b - containing, possess membranes with the RC-LH complexes regularly arrayed. All these membranes appear to have a similar lattice structure and fine-morphology. The lattice spacings of the Ectothiorhodospira haloohloris, Ectothiorhodospira abdelmalekii and Rhodopseudomonas viridis membranes are close to 13 nm, those of Thiocapsa pfennigii and Rhodopseudomonas sulfoviridis are slightly smaller (∼12.5 nm).


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document