Investigating autonomic control of the cardiovascular system: a battery of simple tests

2013 ◽  
Vol 37 (4) ◽  
pp. 401-404 ◽  
Author(s):  
Christopher D. Johnson ◽  
Sean Roe ◽  
Etain A. Tansey

Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by pathological conditions that can damage one or both branches of autonomic control. The set of teaching laboratory activities outlined here uses various interventions, namely, 1) the heart rate response to deep breathing, 2) the heart rate response to a Valsalva maneuver, 3) the heart rate response to standing, and 4) the blood pressure response to standing, that cause fairly predictable disturbances in cardiovascular parameters in normal circumstances, which serve to demonstrate the dynamic control of the cardiovascular system by autonomic nerves. These tests are also used clinically to help investigate potential damage to this control.

1980 ◽  
Vol 48 (2) ◽  
pp. 281-283 ◽  
Author(s):  
L. E. Boerboom ◽  
J. N. Boelkins

Although man is being exposed to hyperbaric environments more frequently, the effects of these environments and the inert gases used are not clearly defined. We therefore designed an experiment to examine both the effects of helium and elevated pressure on the cardiovascular system in conscious rabbits exposed to normoxic levels of a helium-oxygen (He-O2) gas mixture at 1 and 11 atmospheres absolute (ATA) for 2 h. Variables studied included heart rate, blood pressure, cardiac output, systemic vascular resistance, organ blood flow, and resistance to flow. The only change observed was a decrease in heart rate from a control of 284 +/- 7 (mean +/- SE) to 246 +/- 12 beats/min after 2 h of breathing He-O2 at 1 ATA. We therefore conclude that the cardiovascular system is not adversely affected by helium or elevated pressure as used in this experiment.


2004 ◽  
Vol 106 (1) ◽  
pp. 61-66 ◽  
Author(s):  
M. A. KOWALEWSKI ◽  
M. URBAN

Autonomic nervous tests and heart rate variability (HRV) have been used to assess cardiac autonomic function and to evaluate long-term prognosis. The aim of this study was to evaluate the short- and long-term reproducibility of HRV parameters and autonomic nervous tests according to body position (supine or standing). The study group consisted of 26 healthy subjects. Autonomic nervous tests and HRV were performed twice during the day and the results were averaged. The protocol was then repeated 3 days after each examination and also after 6 and 24 months. Autonomic nervous tests included deep breathing, Valsalva manoeuvre and isometric muscle exercise (handgrip), as well as blood pressure and heart rate in response to standing. ECG recordings were taken for 10 min during spontaneous breathing for HRV analysis. We found that the reproducibility of some parameters of the autonomic nervous test were independent of body position [E/I ratio (heart rate response to deep breathing)], whereas other parameters were dependent on body position (Valsalva manoeuvre and blood pressure response to sustained handgrip). In addition, within-day measurements of those parameters varied from non-reproducible (Valsalva ratio, handgrip and blood pressure response to standing) to moderately reproducible [E/I ratio and 30/15 ratio (heart rate response to standing)]. Among the HRV parameters, we found that total power (TP), low (LF)- and high (HF)-frequency were reproducible not only for measurements made within the same day, but also during short- and long-term observations, and only the LF/HF ratio was dependent on body position. We conclude that only a few autonomic nervous tests are reproducible in the short- and long-term. Because HRV parameters obtained during spontaneous respiration showed high reproducibility for measurements made within the same day as well as in the short- and long-term, they should be used instead of autonomic nervous tests when long-term observations are carried out in a healthy population.


1985 ◽  
Vol 18 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Hisakazu Ogura ◽  
Tadao Kitazumi ◽  
Noriko Sadakane ◽  
Kazuyuki Shimada ◽  
Koji Yamamoto ◽  
...  

2007 ◽  
Vol 293 (3) ◽  
pp. H1745-H1749 ◽  
Author(s):  
Erika I. Boesen ◽  
David M. Pollock

Interleukin (IL)-6 has been implicated as a contributing factor in the pathogenesis of hypertension, although the mechanisms involved are unclear. Studies conducted in vitro suggest that IL-6 may have a direct effect on vascular tone and may modulate constrictor responses to agonists. Whether this effect can be observed in vivo is unknown. Therefore, mice were treated with either IL-6 (16 ng/h sc) or vehicle for 14 days, and the acute blood pressure and heart rate responses to endothelin (ET)-1, angiotensin II (ANG II), and phenylephrine (PE) were assessed under isoflurane anesthesia. Blood pressure responses to ET-1 were identical in vehicle- and IL-6-infused mice, both in the presence and the absence of ganglion blockade with chlorisondamine. The fall in heart rate during ET-1 responses was significantly attenuated in IL-6-infused mice with autonomic reflexes intact (vehicle vs. IL-6, P < 0.05 at 1 and 3 nmol/kg of ET-1), but this difference was not observed after ganglionic blockade. Both blood pressure and heart rate responses to ANG II were indistinguishable between IL-6- and vehicle-infused mice, as were responses to PE except for a significant increase in the blood pressure response and decrease in the heart rate response in IL-6-infused mice observed only at the highest dose of PE (300 μg/kg; P < 0.05). These findings show that, despite what might be predicted from studies conducted in vitro, chronic exposure to elevated plasma IL-6 concentrations in itself does not predispose the mouse to enhanced responsiveness to vasoconstrictors in vivo.


2000 ◽  
Vol 39 (02) ◽  
pp. 118-121 ◽  
Author(s):  
S. Akselrod ◽  
S. Eyal

Abstract:A simple nonlinear beat-to-beat model of the human cardiovascular system has been studied. The model, introduced by DeBoer et al. was a simplified linearized version. We present a modified model which allows to investigate the nonlinear dynamics of the cardiovascular system. We found that an increase in the -sympathetic gain, via a Hopf bifurcation, leads to sustained oscillations both in heart rate and blood pressure variables at about 0.1 Hz (Mayer waves). Similar oscillations were observed when increasing the -sympathetic gain or decreasing the vagal gain. Further changes of the gains, even beyond reasonable physiological values, did not reveal another bifurcation. The dynamics observed were thus either fixed point or limit cycle. Introducing respiration into the model showed entrainment between the respiration frequency and the Mayer waves.


Author(s):  
Ewan Thomas ◽  
Marianna Bellafiore ◽  
Ambra Gentile ◽  
Antonio Paoli ◽  
Antonio Palma ◽  
...  

AbstractThe aim of this study will be to review the current body of literature to understand the effects of stretching on the responses of the cardiovascular system. A literature search was performed using the following databases: Scopus, NLM Pubmed and ScienceDirect. Studies regarding the effects of stretching on responses of the cardiovascular system were investigated. Outcomes regarded heart rate(HR), blood pressure, pulse wave velocity (PWV of which baPWV for brachial-ankle and cfPWV for carotid-femoral waveforms), heart rate variability and endothelial vascular function. Subsequently, the effects of each outcome were quantitatively synthetized using meta-analytic synthesis with random-effect models. A total of 16 studies were considered eligible and included in the quantitative synthesis. Groups were also stratified according to cross-sectional or longitudinal stretching interventions. Quality assessment through the NHLBI tools observed a “fair-to-good” quality of the studies. The meta-analytic synthesis showed a significant effect of d=0.38 concerning HR, d=2.04 regarding baPWV and d=0.46 for cfPWV. Stretching significantly reduces arterial stiffness and HR. The qualitative description of the studies was also supported by the meta-analytic synthesis. No adverse effects were reported, after stretching, in patients affected by cardiovascular disease on blood pressure. There is a lack of studies regarding vascular adaptations to stretching.


1985 ◽  
Vol 69 (5) ◽  
pp. 533-540 ◽  
Author(s):  
Gianfranco Parati ◽  
Guido Pomidossi ◽  
Agustin Ramirez ◽  
Bruno Cesana ◽  
Giuseppe Mancia

1. In man evaluation of neural cardiovascular regulation makes use of a variety of tests which address the excitatory and reflex inhibitory neural influences that control circulation. Because interpretation of these tests is largely based on the magnitude of the elicited haemodynamic responses, their reproducibility in any given subject is critical. 2. In 39 subjects with continuous blood pressure (intra-arterial catheter) and heart rate monitoring we measured (i) the blood pressure and heart rate rises during hand-grip and cold-pressor test, (ii) the heart rate changes occurring during baroreceptor stimulation and deactivation by injection of phenylephrine and trinitroglycerine, and (iii) the heart rate and blood pressure changes occurring with alteration in carotid baroreceptor activity by a neck chamber. Each test was carefully standardized and performed at 30 min intervals for a total of six times in each subject. 3. The results showed that the responses to any test were clearly different from one another and that this occurred in all subjects studied. For the group as a whole the average response variability (coefficient of variation) ranged from 10.2% for the blood pressure response to carotid baroreceptor stimulation to 44.2% for the heart rate response to cold-pressor test. The variability of the responses was not related to basal blood pressure or heart rate, nor to the temporal sequence of the test performance. 4. Thus tests employed for studying neural cardiovascular control in man produce responses whose reproducibility is limited. This phenomenon may make it more difficult to define the response magnitude typical of each subject, as well as its comparison in different conditions and diseases.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Luana Almeida Gonzaga ◽  
Luiz Carlos Marques Vanderlei ◽  
Rayana Loch Gomes ◽  
Vitor Engrácia Valenti

Sign in / Sign up

Export Citation Format

Share Document