scholarly journals Effect of chronic IL-6 infusion on acute pressor responses to vasoconstrictors in mice

2007 ◽  
Vol 293 (3) ◽  
pp. H1745-H1749 ◽  
Author(s):  
Erika I. Boesen ◽  
David M. Pollock

Interleukin (IL)-6 has been implicated as a contributing factor in the pathogenesis of hypertension, although the mechanisms involved are unclear. Studies conducted in vitro suggest that IL-6 may have a direct effect on vascular tone and may modulate constrictor responses to agonists. Whether this effect can be observed in vivo is unknown. Therefore, mice were treated with either IL-6 (16 ng/h sc) or vehicle for 14 days, and the acute blood pressure and heart rate responses to endothelin (ET)-1, angiotensin II (ANG II), and phenylephrine (PE) were assessed under isoflurane anesthesia. Blood pressure responses to ET-1 were identical in vehicle- and IL-6-infused mice, both in the presence and the absence of ganglion blockade with chlorisondamine. The fall in heart rate during ET-1 responses was significantly attenuated in IL-6-infused mice with autonomic reflexes intact (vehicle vs. IL-6, P < 0.05 at 1 and 3 nmol/kg of ET-1), but this difference was not observed after ganglionic blockade. Both blood pressure and heart rate responses to ANG II were indistinguishable between IL-6- and vehicle-infused mice, as were responses to PE except for a significant increase in the blood pressure response and decrease in the heart rate response in IL-6-infused mice observed only at the highest dose of PE (300 μg/kg; P < 0.05). These findings show that, despite what might be predicted from studies conducted in vitro, chronic exposure to elevated plasma IL-6 concentrations in itself does not predispose the mouse to enhanced responsiveness to vasoconstrictors in vivo.

1998 ◽  
Vol 275 (3) ◽  
pp. H760-H766 ◽  
Author(s):  
Leander V. Schuerch ◽  
Lilly M. Linder ◽  
Eric Grouzmann ◽  
Walter E. Haefeli

Human neuropeptide Y (hNPY) potentiates the postjunctional vasoconstrictor effects of α1-adrenoceptor agonists in animals and in human hand veins in vivo. We therefore hypothesized that such an interaction might also occur in the human arterial bed. With the present single-blind cross-over study in 12 healthy volunteers, the effect of subpressor doses of hNPY on the blood pressure response to α1-adrenoceptor stimulation was evaluated. Dose-response curves were constructed to intravenously infuse phenylephrine with and without coinfusion with two different doses of hNPY (1.4 and 14.3 pmol ⋅ kg−1 ⋅ min−1). Blood pressure, heart rate, and forearm blood flow were recorded, and plasma hNPY was determined. During infusion of the higher hNPY dose, which increased hNPY from 24.0 ± 12.0 to 495.1 ± 12.6 pmol/l, blood pressure curves were 2.4-fold shifted toward lower phenylephrine dose rates ( P < 0.001). Forearm vascular resistance showed a similar trend, whereas the counterregulatory decrease of heart rate was similar in both groups. In contrast, the lower hNPY dose rate producing a fourfold increase in hNPY concentrations did not modify the response to phenylephrine. This in vivo study in humans demonstrates that hNPY induced potentiating effects on α1-adrenergic constriction also in the systemic arterial circulation and suggests that circulating hNPY may participate in the control of vascular tone.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


2012 ◽  
Vol 303 (8) ◽  
pp. F1187-F1195 ◽  
Author(s):  
Peter Vavrinec ◽  
Robert H. Henning ◽  
Maaike Goris ◽  
Diana Vavrincova-Yaghi ◽  
Hendrik Buikema ◽  
...  

Previously, it was shown that individuals with good baseline (a priori) endothelial function in isolated (in vitro) renal arteries developed less renal damage after ⅚ nephrectomy (5/6Nx; Gschwend S, Buikema H, Navis G, Henning RH, de Zeeuw D, van Dokkum RP. J Am Soc Nephrol 13: 2909–2915, 2002). In this study, we investigated whether preexisting glomerular vascular integrity predicts subsequent renal damage after 5/6Nx, using in vivo intravital microscopy and in vitro myogenic constriction of small renal arteries. Moreover, we aimed to elucidate the role of renal ANG II type 1 receptor (AT1R) expression in this model. Anesthetized rats underwent intravital microscopy to visualize constriction to ANG II of glomerular afferent and efferent arterioles, with continuous measurement of blood pressure, heart rate, and renal blood flow. Thereafter, 5/6Nx was performed, interlobar arteries were isolated from the extirpated kidney, and myogenic constriction was assessed in a perfused vessel setup. Blood pressure and proteinuria were assessed weekly for 12 wk, and focal glomerulosclerosis (FGS) was determined at the end of study. Relative expression AT1R in the kidney cortex obtained at 5/6Nx was determined by PCR. Infusion of ANG II induced significant constriction of both afferent and efferent glomerular arterioles, which strongly positively correlated with proteinuria and FGS at 12 wk after 5/6Nx. Furthermore, in vitro measured myogenic constriction of small renal arteries negatively correlated with proteinuria 12 wk after 5/6Nx. Moreover, in vivo vascular reactivity negatively correlated with in vitro reactivity. Additionally, relative expression of AT1R positively correlated with responses of glomerular arterioles and with markers of renal damage. Both in vivo afferent and efferent responses to ANG II and in vitro myogenic constriction of small renal arteries in the healthy rat predict the severity of renal damage induced by 5/6Nx. This vascular responsiveness is highly dependent on AT1R expression. Intraorgan vascular integrity may provide a useful tool to guide the prevention and treatment of renal end-organ damage.


2020 ◽  
Vol 19 (4) ◽  
pp. 789-796
Author(s):  
Moon Jain ◽  
Hina Iqbal ◽  
Pankaj Yadav ◽  
Himalaya Singh ◽  
Debabrata Chanda ◽  
...  

Purpose: To determine the effects of lysosomal inhibition of autophagy by chloroquine (CHQ) onhypertension-associated changes in the endothelial functions. Method: Angiotensin II (Ang II)-treated human endothelial cell line EA.hy926 and renovascularhypertensive rats were subjected to CHQ treatment (in vitro: 0.5, 1, and 2.5 μM; in vivo: 50 mg/kg/dayfor three weeks). Changes in the protein expressions of LC3b II (autophagosome formation marker) andp62 (autophagy flux marker) were assessed using immunoblotting. Cell migration assay, tubuleformation assay (in vitro), and organ bath studies (in vivo) were performed to evaluate the endothelialfunctions. Hemodynamic parameters were measured as well. Results: A higher expression of LC3b II and a reduced expression of p62 observed in the Ang II-treatedendothelial cells, as well as in the aorta of the hypertensive rats, indicated enhanced autophagy.Treatment with CHQ resulted in reduced autophagy flux (in vitro as well as in vivo) and suppressed AngII-induced endothelial cell migration and angiogenesis (in vitro). The treatment with CHQ was alsoobserved to prevent increase in blood pressure in hypertensive rats and preserved acetylcholineinducedrelaxation in phenylephrine-contracted aorta from the hypertensive rats. In addition, chloroquineattenuated Ang II-induced contractions in the aorta of normotensive as well as hypertensive rats. Conclusion: These observations indicated that CHQ lowers the blood pressure and preserves thevascular endothelial function during hypertension. Keywords: Angiotensin II, Autophagy, Chloroquine, Endothelial function, Hypertension, Vasculardysfunction


1998 ◽  
Vol 274 (5) ◽  
pp. R1353-R1360 ◽  
Author(s):  
Timothy A. Cudd

Conditions that increase the formation of thromboxane A2(TxA2) also result in activation of hemodynamic and adrenocortical responses. The purpose of this study was to test the hypothesis that TxA2 acts directly on the brain to mediate these responses. Adult sheep were chronically instrumented with vascular and intracerebroventricular catheters. The TxA2 analog U-46619 (0, 100, or 1,000 ng ⋅ kg−1 ⋅ min−1) and artificial cerebrospinal fluid (CSF) were infused intracerebroventricularly for 30 min. Heart rate increased in response to 100 ng ⋅ kg−1 ⋅ min−1U-46619 infusions. Heart rate did not change over preinfusion values in response to the highest infusion rate, but values were elevated compared with the postinfusion period. Mean arterial pressure, ACTH, cortisol, hematocrit, and arterial pH (pHa) increased, and arterial partial CO2 pressure ([Formula: see text]) fell in response to 1,000 ng ⋅ kg−1 ⋅ min−1infusions of U-46619. Plasma vasopressin concentrations and arterial partial O2 pressure did not change. In a second study, U-46619 or artificial CSF was infused intracerebroventricularly during prostaglandin synthase blockade. Blockade reduced but did not prevent blood pressure responses to U-46619 infusion, suggesting that the U-46619 infusions increased prostaglandin synthase metabolism to contribute de novo TxA2 or a second metabolite to augment the blood pressure response. Heart rate, pHa,[Formula: see text], ACTH, and cortisol responses to U-46619 were not different with blockade. We conclude that TxA2 acts on the brain to mediate blood pressure, heart rate, pHa,[Formula: see text], hematocrit, ACTH, and cortisol responses. These findings support the hypothesis that TxA2 acts directly on the brain to promote cardiovascular and hormonal responses that may serve a protective function during conditions when TxA2 formation is increased.


1974 ◽  
Vol 48 (s2) ◽  
pp. 19s-21s
Author(s):  
B. A. Schoelkens

1. The angiotensin II antagonism by newly synthesized 8-C-phenylglycine analogues of [5-isoleucine]angiotensin II in different preparations was investigated in vitro and in vivo. 2. All analogues competitively inhibited the myotropic effect of angiotensin II on the isolated colon ascendens of the guinea-pig and the stomach of the rat. 3. In normotensive dogs, cats, rabbits, guinea-pigs and rats the blood pressure response to infused angiotensin II was inhibited by the antagonists. The angiotensin II-induced fall in renal blood flow in the dog was blocked during infusion of the analogues. Acute renal hypertension in rats was significantly decreased. Of conscious rats variously with normal blood pressures, spontaneous hypertension and chronic renal hypertension, only in the last group could a marked uniform fall in blood pressure be demonstrated. The central pressor effect of angiotensin II was also inhibited in conscious rats. 4. 8-C-Phenylglycine analogues of [5-isoleucine]-angiotensin II exhibit a specific antagonistic activity to endogenous and exogenous angiotensin II.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Seungbum Kim ◽  
Christopher R Cogle ◽  
Michael Zingler ◽  
Edward W Scott ◽  
Mohan K Raizada

Cyclosporin and other immunosuppressive drugs are used in bone marrow (BM) transplantation to increase engraftment efficacy and reduce rejection. However, their chronic clinical use is closely associated with increase in blood pressure and development of hypertension (HTN). Despite these significant side effects, little is known about the influence of high blood pressure on hematopoietic stem cell (HSC) and BM activity. Thus, the objective of this study was to investigate if Ang II induced HTN exerts influence on HSC proliferation, differentiation and engraftment in the BM. Infusion of Ang II (1000ng/kg/min for 21 days) and establishment of HTN resulted in increased proliferation of HSCs as evidenced by 87% increase in Sca-1+, c-Kit+, Lin- (SKL) HSC and 254% increase in CD150+, CD48- SKL long-term HSC in the BM. Furthermore, this was associated with significant accumulation of monocytes in both BM (30% increase) and spleen (250% increase). These changes in HSC and inflammatory cells were blocked by co-infusion of Ang II and losartan (60mg/kg/day), In order to understand the effect of Ang II on HSC homing, GFP+ HSCs were injected into the lethally irradiated and saline or Ang II infused C57BL6 mice. FACS analysis of GFP+ donor derived cells showed that hypertensive animals has poor engraftment efficacy on both BM and peripheral blood (35-52% compared to saline controls). Time-lapse in vivo imaging of mouse tibia showed that HSC failed to engraft to the BM osteoblastic niche in hypertensive mice. HSCs pretreated with 100nM Ang II for 18 hours in vitro also showed significantly diminished ability (16% compared to control) to engraft in normal recipient mice. These observations demonstrate that 1) chronic Ang II induced HTN regulates HSC proliferation and impairs the homing ability and reconstitution potential of HSC in BM, 2) These effects are mediated by the AT1 receptor on HSC and 3) Ang II accelerates HSC differentiation leading the increase of inflammatory cells in BM and spleen. The results suggest that hypertensive status and BP control should be strictly taken into account in consideration for BM transplantation.


2014 ◽  
Vol 170 (2) ◽  
pp. 181-191 ◽  
Author(s):  
R van der Pas ◽  
J H M van Esch ◽  
C de Bruin ◽  
A H J Danser ◽  
A M Pereira ◽  
...  

Objective/methodsCushing's disease (CD) is often accompanied by hypertension. CD can be treated surgically and, given the expression of somatostatin subtype 5 and dopamine 2 receptors by corticotroph pituitary adenomas, pharmacologically. Indeed, we recently observed that stepwise medical combination therapy with the somatostatin-analog pasireotide, the dopamine-agonist cabergoline, and ketoconazole (which directly suppresses steroidogenesis) biochemically controlled CD patients and lowered their blood pressure after 80 days. Glucocorticoids (GC) modulate the renin–angiotensin–aldosterone system (RAAS) among others by increasing hepatic angiotensinogen expression and stimulating mineralocorticoid receptors (MR). This study therefore evaluated plasma RAAS components in CD patients before and after drug therapy. In addition, we studied whether cabergoline/pasireotide have direct relaxant effects in angiotensin II (Ang II)-constricted iliac arteries of spontaneously hypertensive rats, with and without concomitant GR/MR stimulation with dexamethasone or hydrocortisone.ResultsBaseline concentrations of angiotensinogen were elevated, while renin and aldosterone were low and suppressed, respectively, even in patients treated with RAAS-blockers. This pattern did not change after 80 days of treatment, despite blood pressure normalization, nor after 4 years of remission. In the presence of dexamethasone, pasireotide inhibited Ang II-mediated vasoconstriction.ConclusionsThe low plasma renin concentrations, even under RAAS blockade, in CD may be the consequence of increased GC-mediated MR stimulation and/or the elevated angiotensinogen levels in such patients. The lack of change in RAAS-parameters despite blood pressure and cortisol normalization suggests persisting consequences of long-term exposure to cortisol excess. Finally, pasireotide may have a direct vasodilating effect contributing to blood pressure lowering.


2004 ◽  
Vol 286 (4) ◽  
pp. H1507-H1514 ◽  
Author(s):  
Zhice Xu ◽  
Lijun Shi ◽  
Jiaming Yao

The central renin-angiotensin system is important in the control of blood pressure in the adult. However, few data exist about the in utero development of central angiotensin-mediated pressor responses. Our recent studies have shown that the application of ANG II into the fetal brain can increase blood pressure at near term. The present study determined fetal blood pressure and heart rate in response to a central application of ANG II in the chronically prepared preterm ovine fetus, determined the action sites marked by c-Fos expression in the fetal central pathways after intracerebroventricular injection of ANG II in utero, and determined angiotensin subtype 1 receptors in the fetal hypothalamus. Central injection of ANG II significantly increased fetal mean arterial pressure (MAP). Adjusted fetal MAP against amniotic pressure was also increased by ANG II. Fetal heart rate was subsequently decreased after the central administration of ANG II and/or the increase of blood pressure. ANG II induced c-Fos expression in the central putative cardiovascular area, the paraventricular nuclei in the brain sympathetic pathway. Application of ANG II also caused intense Fos immunoreactivity in the tractus solitarius nuclei in the hindbrain. In addition, intense angiotensin subtype 1 receptors were expressed in the hypothalamus at preterm. These data demonstrate that central ANG II-related pressor centers start to function as early as at preterm and suggest that the central angiotensin-related sympathetic pathway is likely intact in the control of blood pressure in utero.


Sign in / Sign up

Export Citation Format

Share Document