scholarly journals N-glycosylation and topology of the human SLC26 family of anion transport membrane proteins

2014 ◽  
Vol 306 (10) ◽  
pp. C943-C960 ◽  
Author(s):  
Jing Li ◽  
Fan Xia ◽  
Reinhart A. F. Reithmeier

The human solute carrier ( SLC26) family of anion transporters consists of 10 members ( SLCA1–11, SLCA10 being a pseudogene) that encode membrane proteins containing ∼12 transmembrane (TM) segments with putative N-glycosylation sites (-NXS/T-) in extracellular loops and a COOH-terminal cytosolic STAS domain. All 10 members of the human SLC26 family, FLAG-tagged at the NH2 terminus, were transiently expressed in HEK-293 cells. While most proteins were observed to contain both high-mannose and complex oligosaccharides, SLC26A2 was mainly in the complex form, SLC26A4 in the high-mannose form, and SLC26A8 was not N-glycosylated. Mutation of the putative N-glycosylation sites showed that most members contain multiple N-glycosylation sites in the second extracytosolic (EC) loop, except SLC26A11, which was N-glycosylated in EC loop 4. Immunofluorescence staining of permeabilized cells localized the proteins to the plasma membrane and the endoplasmic reticulum, with SLC26A2 highly localized to the plasma membrane. N-glycosylation was not a necessary requirement for cell surface expression as the localization of nonglycosylated proteins was similar to their wild-type counterparts, although a lower level of cell-surface biotinylation was observed. No immunostaining of intact cells was observed for any SLC26 members, demonstrating that the NH2-terminal FLAG tag was located in the cytosol. Topological models of the SLC26 proteins that contain an even number of transmembrane segments with both the NH2 and COOH termini located in the cytosol and utilized N-glycosylation sites defining the positions of two EC loops are presented.

2004 ◽  
Vol 378 (3) ◽  
pp. 1015-1021 ◽  
Author(s):  
Joanne C. CHEUNG ◽  
Reinhart A. F. REITHMEIER

AE1 (anion exchanger 1) is a glycoprotein found in the plasma membrane of erythrocytes, where it mediates the electroneutral exchange of chloride and bicarbonate, a process important in CO2 removal from tissues. It had been previously shown that human AE1 purified from erythrocytes is covalently modified at Cys-843 in the membrane domain with palmitic acid. In this study, the role of Cys-843 in human AE1 trafficking was investigated by expressing various AE1 and Cys-843Ala (C843A) mutant constructs in transiently transfected HEK-293 cells. The AE1 C843A mutant was expressed to a similar level to AE1. The rate of N-glycan conversion from high-mannose into complex form in a glycosylation mutant (N555) of AE1 C843A, and thus the rate of trafficking from the endoplasmic reticulum to the Golgi, were comparable with that of AE1 (N555). Like AE1, AE1 C843A could be biotinylated at the cell surface, indicating that a cysteine residue at position 843 is not required for cell-surface expression of the protein. The turnover rate of AE1 C843A was not significantly different from AE1. While other proteins could be palmitoylated, labelling of transiently transfected HEK-293 cells or COS7 cells with [3H]palmitic acid failed to produce any detectable AE1 palmitoylation. These results suggest that AE1 is not palmitoylated in HEK-293 or COS7 cells and can traffic to the plasma membrane.


1991 ◽  
Vol 112 (1) ◽  
pp. 39-54 ◽  
Author(s):  
S G Miller ◽  
H P Moore

Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359).


2000 ◽  
Vol 349 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Jing LI ◽  
Janne QUILTY ◽  
Milka POPOV ◽  
Reinhart A. F. REITHMEIER

The human erythrocyte anion exchanger (AE)1 (Band 3) contains a single complex N-linked oligosaccharide that is attached to Asn642 in the fourth extracellular loop of this polytopic membrane protein, while other isoforms (AE2, AE3 and trout AE1) are N-glycosylated on the preceding extracellular loop. Human AE1 expressed in transfected human embryonic kidney (HEK)-293 or COS-7 cells contained a high-mannose oligosaccharide. The lack of oligosaccharide processing was not due to retention of AE1 in the endoplasmic reticulum since biotinylation assays showed that approx. 30% of the protein was expressed at the cell surface. Moving the N-glycosylation site to the preceding extracellular loop in an AE1 glycosylation mutant (N555) resulted in processing of the oligosaccharide and production of a complex form of AE1. A double N-glycosylation mutant (N555/N642) contained both a high-mannose and a complex oligosaccharide chain. The complex form of the N555 mutant could be biotinylated showing that this form of the glycoprotein was at the cell surface. Pulse-chase experiments showed that the N555 mutant was efficiently converted from a high-mannose to a complex oligosaccharide with a half-time of approx. 4 h, which reflected the time course of trafficking of AE1 from the endoplasmic reticulum to the plasma membrane. The turnover of the complex form of the N555 mutant occurred with a half-life of approx. 15 h. The results show that the oligosaccharide attached to the endogenous site in extracellular loop 4 in human AE1 is not processed in HEK-293 or COS-7 cells, while the oligosaccharide attached to the preceding loop is converted into the complex form.


2002 ◽  
Vol 115 (17) ◽  
pp. 3497-3508
Author(s):  
Laurence Mery ◽  
Bettina Strauß ◽  
Jean F. Dufour ◽  
Karl H. Krause ◽  
Markus Hoth

Mammalian homologs of the Drosophila TRP protein have been shown to form cation-permeable channels in the plasma membrane but very little is known about the mechanisms that control their cell surface localization. Recently it has been demonstrated that the last three C-terminal amino acids(TRL) of TRPC4 comprise a PDZ-interacting domain that binds to the scaffold protein EBP50 [ezrin/moesin/radixin-binding phosphoprotein 50]. In this report, we have examined the influence of the TRL motif on the subcellular distribution of TRPC4 in human embryonic kidney (HEK) 293 cells. We have also analyzed the consequences of the interaction between EBP50 and the membrane-cytoskeletal adaptors of the ezrin/radixin/moesin (ERM) family for the cell surface expression of TRPC4. Using immunofluorescence microscopy, we found that the mutant lacking the TRL motif accumulated into cell outgrowths and exhibited a punctate distribution pattern whereas the wild-type channel was evenly distributed on the cell surface. Deletion of the PDZ-interacting domain also decreased the expression of TRPC4 in the plasma membrane by 2.4-fold, as assessed by cell surface biotinylation experiments. Finally, in a large percentage of cells co-expressing TRPC4 and an EBP50 mutant lacking the ERM-binding site, TRPC4 was not present in the plasma membrane but co-localized with the truncated scaffold in a perinuclear compartment (most probably representing the Golgi apparatus) and in vesicles associated with actin filaments. Our data demonstrate that the PDZ-interacting domain of TRPC4 controls its localization and surface expression in transfected HEK293 cells. They also point to a yet unexplored role of the EBP50-ERM complex in the regulation of protein insertion into the plasma membrane.


Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 568
Author(s):  
Jakob L. Kure ◽  
Thommie Karlsson ◽  
Camilla B. Andersen ◽  
B. Christoffer Lagerholm ◽  
Vesa Loitto ◽  
...  

The formation of nanodomains in the plasma membrane are thought to be part of membrane proteins regulation and signaling. Plasma membrane proteins are often investigated by analyzing the lateral mobility. k-space ICS (kICS) is a powerful image correlation spectroscopy (ICS) technique and a valuable supplement to fluorescence correlation spectroscopy (FCS). Here, we study the diffusion of aquaporin-9 (AQP9) in the plasma membrane, and the effect of different membrane and cytoskeleton affecting drugs, and therefore nanodomain perturbing, using kICS. We measured the diffusion coefficient of AQP9 after addition of these drugs using live cell Total Internal Reflection Fluorescence imaging on HEK-293 cells. The actin polymerization inhibitors Cytochalasin D and Latrunculin A do not affect the diffusion coefficient of AQP9. Methyl-β-Cyclodextrin decreases GFP-AQP9 diffusion coefficient in the plasma membrane. Human epidermal growth factor led to an increase in the diffusion coefficient of AQP9. These findings led to the conclusion that kICS can be used to measure diffusion AQP9, and suggests that the AQP9 is not part of nanodomains.


1986 ◽  
Vol 238 (2) ◽  
pp. 335-340 ◽  
Author(s):  
P C Holland ◽  
A Herscovics

The effects of N-linked-oligosaccharide-processing inhibitors on the fusion of rat L6 myoblasts to form myotubes were examined. The glucosidase inhibitor N-methyl-1-deoxynojirimycin (MDJN) greatly inhibited fusion, whereas the mannosidase inhibitor 1-deoxymannojirimycin (ManDJN) had relatively little effect, although both compounds prevented the formation of N-linked complex oligosaccharides. These results indicate that complex oligosaccharides on glycoproteins do not play a role in myoblast fusion. With MDJN, high-mannose oligosaccharides containing three glucose residues and seven to eight mannose residues were found at the cell surface, whereas with ManDJN, non-glucosylated high-mannose oligosaccharides with seven to nine mannose residues were obtained. These results indicate that the persistence of glucose residues on high-mannose oligosaccharides may be responsible for the inhibition of fusion. It is suggested that glucose either masks the cell-surface recognition process leading to fusion or prevents the cell-surface expression of specific glycoprotein(s) essential to the fusion process.


Author(s):  
Esraa Haji ◽  
Saeed Al Mahri ◽  
Yumna Aloraij ◽  
Shuja Shafi Malik ◽  
Sameer Mohammad

Adrenergic receptor β3 (ADRβ3) is a member of the rhodopsin-like G protein-coupled receptor family. The binding of the ligand to ADRβ3 activates adenylate cyclase and increases cAMP in the cells. ADRβ3 is highly expressed in white and brown adipocytes and controls key regulatory pathways of lipid metabolism. Trp64Arg (W64R) polymorphism in the ADRβ3 has been associated with the early development of type 2 diabetes mellitus, lower resting metabolic rate, abdominal obesity, and insulin resistance. It is unclear how the substitution of W64R affects the functioning of ADRβ3. This study was initiated to functionally characterize this obesity-linked variant of ADRβ3. We evaluated in detail the expression, subcellular distribution, and post-activation behavior of the WT and W64R ADRβ3 using a single cell quantitative fluorescence microscopy. When expressed in HEK 293 cells, ADRβ3 shows a typical distribution displayed by other GPCRs with a predominant localization at the cell surface. Unlike Adrenergic receptor β2 (ADRβ2), agonist induced desensitization of ADRβ3 does not involve loss of cell surface expression. WT and W64R variant of ADRβ3 displayed comparable biochemical properties and there was no significant impact of the substitution of Tryptophan with Arginine on the expression, cellular distribution, signaling, and post-activation behavior of ADRβ3. The obesity-linked W64R variant of ADRβ3 is indistinguishable from the WT ADRβ3 in terms of expression, cellular distribution, signaling, and post-activation behavior.


1989 ◽  
Vol 92 (1) ◽  
pp. 85-91
Author(s):  
W.F. Patton ◽  
M.R. Dhanak ◽  
B.S. Jacobson

The plasma membrane proteins of Dictyostelium discoideum were characterized with respect to their partitioning into the Triton-insoluble cytoskeleton fraction of the cell during concanavalin A-induced capping. Two fractions of plasma membrane-associated concanavalin A were identified; one that immediately associated with the cytoskeleton fraction via cell surface glycoproteins, and one that partitioned with the cytoskeleton only after extensive cell surface glycoprotein cross-linking. Three major classes of polypeptides were found in the plasma membrane that differed with respect to their partitioning properties into the cytoskeleton fraction. The temporal order of association of the polypeptides with the cytoskeleton during concanavalin A-induced capping corresponded to the strength of their association with the cytoskeleton fraction as determined by pH and ionic strength elution from unligated cytoskeletons.


2000 ◽  
Vol 278 (4) ◽  
pp. C803-C811 ◽  
Author(s):  
Pamela G. Lloyd ◽  
Christopher D. Hardin

We used β-escin-permeabilized pig cerebral microvessels (PCMV) to study the organization of carbohydrate metabolism in the cytoplasm of vascular smooth muscle (VSM) cells. We have previously demonstrated (Lloyd PG and Hardin CD. Am J Physiol Cell Physiol 277: C1250–C1262, 1999) that intact PCMV metabolize the glycolytic intermediate [1-13C]fructose 1,6-bisphosphate (FBP) to [1-13C]glucose with negligible production of [3-13C]lactate, while simultaneously metabolizing [2-13C]glucose to [2-13C]lactate. Thus gluconeogenic and glycolytic intermediates do not mix freely in intact VSM cells (compartmentation). Permeabilized PCMV retained the ability to metabolize [2-13C]glucose to [2-13C]lactate and to metabolize [1-13C]FBP to [1-13C]glucose. The continued existence of glycolytic and gluconeogenic activity in permeabilized cells suggests that the intermediates of these pathways are channeled (directly transferred) between enzymes. Both glycolytic and gluconeogenic flux in permeabilized PCMV were sensitive to the presence of exogenous ATP and NAD. It was most interesting that a major product of [1-13C]FBP metabolism in permeabilized PCMV was [3-13C]lactate, in direct contrast to our previous findings in intact PCMV. Thus disruption of the plasma membrane altered the distribution of substrates between the glycolytic and gluconeogenic pathways. These data suggest that organization of the plasma membrane into distinct microdomains plays an important role in sorting intermediates between the glycolytic and gluconeogenic pathways in intact cells.


Sign in / Sign up

Export Citation Format

Share Document