Sorting of metabolic pathway flux by the plasma membrane in cerebrovascular smooth muscle cells

2000 ◽  
Vol 278 (4) ◽  
pp. C803-C811 ◽  
Author(s):  
Pamela G. Lloyd ◽  
Christopher D. Hardin

We used β-escin-permeabilized pig cerebral microvessels (PCMV) to study the organization of carbohydrate metabolism in the cytoplasm of vascular smooth muscle (VSM) cells. We have previously demonstrated (Lloyd PG and Hardin CD. Am J Physiol Cell Physiol 277: C1250–C1262, 1999) that intact PCMV metabolize the glycolytic intermediate [1-13C]fructose 1,6-bisphosphate (FBP) to [1-13C]glucose with negligible production of [3-13C]lactate, while simultaneously metabolizing [2-13C]glucose to [2-13C]lactate. Thus gluconeogenic and glycolytic intermediates do not mix freely in intact VSM cells (compartmentation). Permeabilized PCMV retained the ability to metabolize [2-13C]glucose to [2-13C]lactate and to metabolize [1-13C]FBP to [1-13C]glucose. The continued existence of glycolytic and gluconeogenic activity in permeabilized cells suggests that the intermediates of these pathways are channeled (directly transferred) between enzymes. Both glycolytic and gluconeogenic flux in permeabilized PCMV were sensitive to the presence of exogenous ATP and NAD. It was most interesting that a major product of [1-13C]FBP metabolism in permeabilized PCMV was [3-13C]lactate, in direct contrast to our previous findings in intact PCMV. Thus disruption of the plasma membrane altered the distribution of substrates between the glycolytic and gluconeogenic pathways. These data suggest that organization of the plasma membrane into distinct microdomains plays an important role in sorting intermediates between the glycolytic and gluconeogenic pathways in intact cells.

2010 ◽  
Vol 299 (5) ◽  
pp. C988-C993 ◽  
Author(s):  
Hak Rim Kim ◽  
Paul C. Leavis ◽  
Philip Graceffa ◽  
Cynthia Gallant ◽  
Kathleen G. Morgan

Here we report and validate a new method, suitable broadly, for use in differentiated cells and tissues, for the direct visualization of actin polymerization under physiological conditions. We have designed and tested different versions of fluorescently labeled actin, reversibly attached to the protein transduction tag TAT, and have introduced this novel reagent into intact differentiated vascular smooth muscle cells (dVSMCs). A thiol-reactive version of the TAT peptide was synthesized by adding the amino acids glycine and cysteine to its NH2-terminus and forming a thionitrobenzoate adduct: viz. TAT-Cys-S-STNB. This peptide reacts readily with G-actin, and the complex is rapidly taken up by freshly enzymatically isolated dVSMC, as indicated by the fluorescence of a FITC tag on the TAT peptide. By comparing different versions of the construct, we determined that the optimal construct for biological applications is a nonfluorescently labeled TAT peptide conjugated to rhodamine-labeled actin. When TAT-Cys-S-STNB-tagged rhodamine actin (TSSAR) was added to live, freshly enzymatically isolated cells, we observed punctae of incorporated actin at the cortex of the cell. The punctae are indistinguishable from those we have previously reported to occur in the same cell type when rhodamine G-actin is added to permeabilized cells. Thus this new method allows the delivery of labeled G-actin into intact cells without disrupting the native state and will allow its further use to study the effect of physiological intracellular Ca2+ concentration transients and signal transduction on actin dynamics in intact cells.


1995 ◽  
Vol 82 (2) ◽  
pp. 244-249 ◽  
Author(s):  
Kazuhiko Nagatani ◽  
Jeffery E. Masciopinto ◽  
Peter B. Letarte ◽  
Robert A. Haworth ◽  
Thomas A. Duff

✓ Cerebral arteries in spasm have been found to contain low levels of adenosine triphosphate (ATP), and it has been postulated that this change in levels results from hypoxia produced by arterial encasement in clotted material. This study was undertaken to determine whether any of four blood-derived agents, ferrous hemoglobin, methemoglobin, hemin, or bilirubin, is capable of reducing energy levels in cerebral artery smooth-muscle cells. Twenty-four-hour exposure of cultured canine basilar artery cells to ferrous hemoglobin and bilirubin led to a significant decline in ATP levels (to 8.9 nmol/mg protein and 2.8 nmol/mg protein, respectively) versus control (16.6 nmol/mg protein); methemoglobin and hemin showed no effect. Bilirubin but not hemoglobin was found to interfere with electron transport and with creatine phosphokinase activity in intact cells; however, bilirubin showed no inhibitory effect on this enzyme in cell-free conditions. The findings indicate that hemoglobin and bilirubin may be responsible for diminished energy levels in cerebral arteries. These observations also suggest that bilirubin may exert its effect on ATP by impairing mitochondrial function.


2008 ◽  
Vol 19 (9) ◽  
pp. 3944-3955 ◽  
Author(s):  
Li Wang ◽  
Mary A. Bittner ◽  
Daniel Axelrod ◽  
Ronald W. Holz

We investigated the functional and structural implications of SNAP25 having two SNARE motifs (SN1 and SN2). A membrane-bound, intramolecular FRET probe was constructed to report on the folding of N-terminal SN1 and C-terminal SN2 in living cells. Membrane-bound constructs containing either or both SNARE motifs were also singly labeled with donor or acceptor fluorophores. Interaction of probes with other SNAREs was monitored by the formation of SDS-resistant complexes and by changes in FRET measured in vitro using spectroscopy and in the plasma membrane of living cells using TIRF microscopy. The probes formed the predicted SDS-resistant SNARE complexes. FRET measurements revealed that syntaxin induced a close association of the N-termini of SN1 and SN2. This association required that the SNARE motifs reside in the same molecule. Unexpectedly, the syntaxin-induced FRET was prevented by VAMP. Both full-length SNAP25 constructs and the combination of its separated, membrane-bound constituent chains supported secretion in permeabilized chromaffin cells that had been allowed to rundown. However, only full-length SNAP25 constructs enabled robust secretion from intact cells or permeabilized cells before rundown. The experiments suggest that the bidentate structure permits specific conformations in complexes with syntaxin and VAMP and facilitates the function of SN1 and SN2 in exocytosis.


1991 ◽  
Vol 112 (1) ◽  
pp. 39-54 ◽  
Author(s):  
S G Miller ◽  
H P Moore

Regulated exocytosis in many permeabilized cells can be triggered by calcium and nonhydrolyzable GTP analogues. Here we examine the role of these effectors in exocytosis of constitutive vesicles using a system that reconstitutes transport between the trans-Golgi region and the plasma membrane. Transport is assayed by two independent methods: the movement of a transmembrane glycoprotein (vesicular stomatitis virus glycoprotein [VSV G protein]) to the cell surface; and the release of a soluble marker, sulfated glycosaminoglycan (GAG) chains, that have been synthesized and radiolabeled in the trans-Golgi. The plasma membrane of CHO cells was selectively perforated with the bacterial cytolysin streptolysin-O. These perforated cells allow exchange of ions and cytosolic proteins but retain intracellular organelles and transport vesicles. Incubation of the semi-intact cells with ATP and a cytosolic fraction results in transport of VSV G protein and GAG chains to the cell surface. The transport reaction is temperature dependent, requires hydrolyzable ATP, and is inhibited by N-ethylmaleimide. Nonhydrolyzable GTP analogs such as GTP gamma S, which stimulate the fusion of regulated secretory granules, completely abolish constitutive secretion. The rate and extent of constitutive transport between the trans-Golgi and the plasma membrane is independent of free Ca2+ concentrations. This is in marked contrast to fusion of regulated secretory granules with the plasma membrane, and transport between the ER and the cis-Golgi (Beckers, C. J. M., and W. E. Balch. 1989. J. Cell Biol. 108:1245-1256; Baker, D., L. Wuestehube, R. Schekman, and D. Botstein. 1990. Proc. Natl. Acad. Sci. USA. 87:355-359).


2014 ◽  
Vol 306 (10) ◽  
pp. C943-C960 ◽  
Author(s):  
Jing Li ◽  
Fan Xia ◽  
Reinhart A. F. Reithmeier

The human solute carrier ( SLC26) family of anion transporters consists of 10 members ( SLCA1–11, SLCA10 being a pseudogene) that encode membrane proteins containing ∼12 transmembrane (TM) segments with putative N-glycosylation sites (-NXS/T-) in extracellular loops and a COOH-terminal cytosolic STAS domain. All 10 members of the human SLC26 family, FLAG-tagged at the NH2 terminus, were transiently expressed in HEK-293 cells. While most proteins were observed to contain both high-mannose and complex oligosaccharides, SLC26A2 was mainly in the complex form, SLC26A4 in the high-mannose form, and SLC26A8 was not N-glycosylated. Mutation of the putative N-glycosylation sites showed that most members contain multiple N-glycosylation sites in the second extracytosolic (EC) loop, except SLC26A11, which was N-glycosylated in EC loop 4. Immunofluorescence staining of permeabilized cells localized the proteins to the plasma membrane and the endoplasmic reticulum, with SLC26A2 highly localized to the plasma membrane. N-glycosylation was not a necessary requirement for cell surface expression as the localization of nonglycosylated proteins was similar to their wild-type counterparts, although a lower level of cell-surface biotinylation was observed. No immunostaining of intact cells was observed for any SLC26 members, demonstrating that the NH2-terminal FLAG tag was located in the cytosol. Topological models of the SLC26 proteins that contain an even number of transmembrane segments with both the NH2 and COOH termini located in the cytosol and utilized N-glycosylation sites defining the positions of two EC loops are presented.


1998 ◽  
Vol 274 (1) ◽  
pp. C88-C96 ◽  
Author(s):  
Christopher D. Hardin ◽  
Dorian R. Finder

To determine whether channeling of glycolytic intermediates can occur in vascular smooth muscle (VSM), we permeabilized freshly isolated VSM cells from hog carotid arteries with dextran sulfate. The dextran sulfate-treated cells did not exclude trypan blue, a dye with molecular weight of ∼1,000. If glycolytic intermediates freely diffuse, plasmalemmal permeabilization would allow intermediates to exit the cell and glycolytic flux should cease. We incubated permeabilized and nonpermeabilized cells with 5 mM [1-13C]glucose at 37°C for 3 h. 13C nuclear magnetic resonance (NMR) was used to determine relative [3-13C]lactate production and to identify any13C-labeled glycolytic intermediates that exited from the permeabilized cells. [3-13C]lactate production from [1-13C]glucose was decreased by an average of 32% ( n = 6) in permeabilized cells compared with intact cells. No13C-labeled glycolytic intermediates were observed in the bathing solution of permeabilized cells. We conclude that channeling of glycolytic intermediates can occur in VSM cells.


2019 ◽  
Vol 33 (9) ◽  
pp. 9785-9796 ◽  
Author(s):  
Takuro Numaga‐Tomita ◽  
Tsukasa Shimauchi ◽  
Sayaka Oda ◽  
Tomohiro Tanaka ◽  
Kazuhiro Nishiyama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document