scholarly journals Hypoxia-induced changes in Ca2+ mobilization and protein phosphorylation implicated in impaired wound healing

2014 ◽  
Vol 306 (10) ◽  
pp. C972-C985 ◽  
Author(s):  
Albert Lee ◽  
Kelsey Derricks ◽  
Martin Minns ◽  
Sophina Ji ◽  
Cheryl Chi ◽  
...  

The process of wound healing must be tightly regulated to achieve successful restoration of injured tissue. Previously, we demonstrated that when corneal epithelium is injured, nucleotides and neuronal factors are released to the extracellular milieu, generating a Ca2+ wave from the origin of the wound to neighboring cells. In the present study we sought to determine how the communication between epithelial cells in the presence or absence of neuronal wound media is affected by hypoxia. A signal-sorting algorithm was developed to determine the dynamics of Ca2+ signaling between neuronal and epithelial cells. The cross talk between activated corneal epithelial cells in response to neuronal wound media demonstrated that injury-induced Ca2+ dynamic patterns were altered in response to decreased O2 levels. These alterations were associated with an overall decrease in ATP and changes in purinergic receptor-mediated Ca2+ mobilization and localization of N-methyl-d-aspartate receptors. In addition, we used the cornea in an organ culture wound model to examine how hypoxia impedes reepithelialization after injury. There was a change in the recruitment of paxillin to the cell membrane and deposition of fibronectin along the basal lamina, both factors in cell migration. Our results provide evidence that complex Ca2+-mediated signaling occurs between sensory neurons and epithelial cells after injury and is critical to wound healing. Information revealed by these studies will contribute to an enhanced understanding of wound repair under compromised conditions and provide insight into ways to effectively stimulate proper epithelial repair.

Author(s):  
Rick L. Vaughn ◽  
Shailendra K. Saxena ◽  
John G. Sharp

We have developed an intestinal wound model that includes surgical construction of an ileo-cecal patch to study the complex process of intestinal wound healing. This allows approximation of ileal mucosa to the cecal serosa and facilitates regeneration of ileal mucosa onto the serosal surface of the cecum. The regeneration of ileal mucosa can then be evaluated at different times. The wound model also allows us to determine the rate of intestinal regeneration for a known size of intestinal wound and can be compared in different situations (e.g. with and without EGF and Peyer’s patches).At the light microscopic level it appeared that epithelial cells involved in regeneration of ileal mucosa originated from the enlarged crypts adjacent to the intestinal wound and migrated in an orderly fashion onto the serosal surface of the cecum. The migrating epithelial cells later formed crypts and villi by the process of invagination and evagination respectively. There were also signs of proliferation of smooth muscles underneath the migratory epithelial cells.


2015 ◽  
Vol 56 (5) ◽  
pp. 3004 ◽  
Author(s):  
Vivien Jane Coulson-Thomas ◽  
Shao-Hsuan Chang ◽  
Lung-Kun Yeh ◽  
Yvette May Coulson-Thomas ◽  
Yu Yamaguchi ◽  
...  

Eye ◽  
2017 ◽  
Vol 32 (4) ◽  
pp. 813-819 ◽  
Author(s):  
A Robciuc ◽  
R P J Arvola ◽  
M Jauhiainen ◽  
J M Holopainen

2016 ◽  
Vol 310 (11) ◽  
pp. C993-C1000 ◽  
Author(s):  
Chengbiao Zhang ◽  
Xiaotong Su ◽  
Lars Bellner ◽  
Dao-Hong Lin

The expression of caveolin-1 (Cav1) in corneal epithelium is associated with regeneration potency. We used Cav1−/− mice to study the role of Cav1 in modulating corneal wound healing. Western blot and whole cell patch clamp were employed to study the effect of Cav1 deletion on Kir4.1 current density in corneas. We found that Ba2+-sensitive K+ currents in primary cultured murine corneal epithelial cells (pMCE) from Cav1−/− were dramatically reduced (602 pA) compared with those from wild type (WT; 1,300 pA). As a consequence, membrane potential was elevated in pMCE from Cav1−/− compared with that from WT (−43 ± 7.5 vs. −58 ± 4.0 mV, respectively). Western blot showed that either inhibition of Cav1 expression or Ba2+ incubation stimulated phosphorylation of the EGFR. The transwell migration assay showed that Cav1 genetic inactivation accelerated cell migration. The regrowth efficiency of human corneal epithelial cells (HCE) transfected with siRNA-Cav1 or negative control was evaluated by scrape injury assay. With the presence of mitomycin C (10 μg/ml) to avoid the influence of cell proliferation, Cav1 inhibition with siRNA significantly increased migration compared with control siRNA in HCE. This promoting effect by siRNA-Cav1 could not be further enhanced by cotransfection with siRNA-Kcnj10. By using corneal debridement, we found that wound healing was significantly accelerated in Cav1−/− compared with WT mice (70 ± 10 vs. 36 ± 3%, P < 0.01). Our findings imply that the mechanism by which Cav-1 knockout promotes corneal regrowth is, at least partially, due to the inhibition of Kir4.1 which stimulates EGFR signaling.


Sign in / Sign up

Export Citation Format

Share Document