Modeling action potential generation and propagation in NRK fibroblasts

2004 ◽  
Vol 287 (4) ◽  
pp. C851-C865 ◽  
Author(s):  
J. J. Torres ◽  
L. N. Cornelisse ◽  
E. G. A. Harks ◽  
W. P. M. van Meerwijk ◽  
A. P. R. Theuvenet ◽  
...  

Normal rat kidney (NRK) fibroblasts change their excitability properties through the various stages of cell proliferation. The present mathematical model has been developed to explain excitability of quiescent (serum deprived) NRK cells. It includes as cell membrane components, on the basis of patch-clamp experiments, an inwardly rectifying potassium conductance ( GKir), an L-type calcium conductance ( GCaL), a leak conductance ( Gleak), an intracellular calcium-activated chloride conductance [ GCl(Ca)], and a gap junctional conductance ( Ggj), coupling neighboring cells in a hexagonal pattern. This membrane model has been extended with simple intracellular calcium dynamics resulting from calcium entry via GCaL channels, intracellular buffering, and calcium extrusion. It reproduces excitability of single NRK cells and cell clusters and intercellular action potential (AP) propagation in NRK cell monolayers. Excitation can be evoked by electrical stimulation, external potassium-induced depolarization, or hormone-induced intracellular calcium release. Analysis shows the roles of the various ion channels in the ultralong (∼30 s) NRK cell AP and reveals the particular role of intracellular calcium dynamics in this AP. We support our earlier conclusion (De Roos A, Willems PH, van Zoelen EJ, and Theuvenet AP. Am J Physiol Cell Physiol 273: C1900–C1907, 1997) that AP generation and propagation may act as a rapid mechanism for the propagation of intracellular calcium waves, thus contributing to fast intercellular calcium signaling. The present model serves as a starting point to further analyze excitability changes during contact inhibition and cell transformation.

2003 ◽  
Vol 13 (12) ◽  
pp. 3873-3886
Author(s):  
O. V. ASLANIDI ◽  
A. V. HOLDEN

A simple two-variable model is used to replace the formulation of calcium dynamics in the Luo–Rudy ventricular cell model. Virtual ventricular cell and tissue are developed and validated to reproduce restitution properties and calcium-dependent voltage patterns present in the original model. Basic interactions between the membrane potential and Ca 2+ dynamics in the virtual cell and a strand of the virtual tissue are studied. Intracellular calcium waves can be linked to both action potentials (APs) and delayed afterdepolarizations (DADs). An intracellular calcium wave propagating from the cell interior can induce an AP upon reaching the cell membrane. The voltage and the intracellular Ca 2+ patterns within the same cell can be highly desynchronized. In a one-dimensional strand of the virtual tissue calcium motion is driven by the AP propagation. However, calcium release can be induced upon certain conditions (e.g. Na + overload of the cells), which results in DADs propagating in the wake of AP. Such propagating DADs can reach the excitation threshold, generating a pair of extrasystolic APs. Collision of a propagating AP with a site of elevated intracellular Ca 2+ concentration does not affect the propagation under the normal conditions. Under Na + overload local elevation of the intracellular Ca 2+ leads to generation of an extrasystolic AP, which destroys the original propagating AP.


1993 ◽  
Vol 613 (1) ◽  
pp. 156-159 ◽  
Author(s):  
Myung H. Kim-Lee ◽  
Bradford T. Stokes ◽  
Douglas K. Anderson

2010 ◽  
Vol 20 (4) ◽  
pp. 045104 ◽  
Author(s):  
Emily Harvey ◽  
Vivien Kirk ◽  
Hinke M. Osinga ◽  
James Sneyd ◽  
Martin Wechselberger

Sign in / Sign up

Export Citation Format

Share Document