Contribution of sodium pump to resting potential of squid giant axon

1978 ◽  
Vol 235 (1) ◽  
pp. C55-C62 ◽  
Author(s):  
P. de Weer ◽  
D. Geduldig

The effect of the cardiotonic aglycone, strophanthidin, on sodium and potassium efflux, membrane potential, membrane conductance, potassium permeability, and the shape of the action potential of the giant axon of the squid, Loligo pealei, was examined. Strophanthidin depolarized the membrane to an extent determined by the intracellular sodium concentration, except in axons pretreated with cyanide, in which the effect is abolished. Cyanide itself hyperpolarized the axon membrane. Axons treated with strophanthidin appear to be better potassium electrodes, but this observation is fully accounted for by the stimulating effect of [K]o on an electrogenic sodium pump. The increase in potassium efflux produced by strophanthidin is also well accounted for by the observed membrane depolarization and the known dependence of potassium permeability on membrane potential (e-fold increase in efflux per 6.4 mV depolarization). Strophanthidin has no demonstrable effect on membrane conductance apart from that due to the observed depolarization. These findings support the view that cardiotonic steroids, at least in nerve, are specific inhibitors of the sodium pump, devoid of effects on permeability that might interfere with the study of electrogenic pumping. The alteration in the shape of the action potential after exposure to strophanthidin (deepening of the "underswing") suggests that the strophanthidin-induced membrane depolarization results from the inhibition of a true electrogenic pump, and not from ion redistributions in the vicinity of the membrane.

1957 ◽  
Vol 40 (6) ◽  
pp. 859-885 ◽  
Author(s):  
Ichiji Tasaki ◽  
Susumu Hagiwara

1. Intracellular injection of tetraethylammonium chloride (TEA) into a giant axon of the squid prolongs the duration of the action potential without changing the resting potential (Fig. 3). The prolongation is sometimes 100-fold or more. 2. The action potential of a giant axon treated with TEA has an initial peak followed by a plateau (Fig. 3). The membrane resistance during the plateau is practically normal (Fig. 4). Near the end of the action potential, there is an apparent increase in the membrane resistance (Fig. 5D and Fig. 6, right). 3. The phenomenon of abolition of action potentials was demonstrated in the squid giant axon treated with TEA (Fig. 7). Following an action potential abolished in its early phase, there is no refractoriness (Fig. 8). 4. By the method of voltage clamp, the voltage-current relation was investigated on normal squid axons as well as on axons treated with TEA (Figs. 9 and 10). 5. The presence of stable states of the membrane was demonstrated by clamping the membrane potential with two voltage steps (Fig. 11). Experimental evidence was presented showing that, in an "unstable" state, the membrane conductance is not uniquely determined by the membrane potential. 6. The effect of low sodium water was investigated in the axon treated with TEA (Fig. 12). 7. The similarity between the action potential of a squid axon under TEA and that of the vertebrate cardiac muscle was stressed. The experimental results were interpreted as supporting the view that there are two stable states in the membrane. Initiation and abolition of an action potential were explained as transitions between the two states.


1962 ◽  
Vol 45 (6) ◽  
pp. 1195-1216 ◽  
Author(s):  
Fred J. Julian ◽  
John W. Moore ◽  
David E. Goldman

A method similar to the sucrose-gap technique introduced be Stäpfli is described for measuring membrane potential and current in singly lobster giant axons (diameter about 100 micra). The isotonic sucrose solution used to perfuse the gaps raises the external leakage resistance so that the recorded potential is only about 5 per cent less than the actual membrane potential. However, the resting potential of an axon in the sucrose-gap arrangement is increased 20 to 60 mv over that recorded by a conventional micropipette electrode when the entire axon is bathed in sea water. A complete explanation for this effect has not been discovered. The relation between resting potential and external potassium and sodium ion concentrations shows that potassium carries most of the current in a depolarized axon in the sucrose-gap arrangement, but that near the resting potential other ions make significant contributions. Lowering the external chloride concentration decreases the resting potential. Varying the concentration of the sucrose solution has little effect. A study of the impedance changes associated with the action potential shows that the membrane resistance decreases to a minimum at the peak of the spike and returns to near its initial value before repolarization is complete (a normal lobster giant axon action potential does not have an undershoot). Action potentials recorded simultaneously by the sucrose-gap technique and by micropipette electrodes are practically superposable.


1968 ◽  
Vol 51 (3) ◽  
pp. 309-319 ◽  
Author(s):  
M. P. Blaustein

Tropine p-tolylacetate (TPTA) and its quaternary analogue, tropine p-tolylacetate methiodide (TPTA MeI) decrease the early transient (Na) and late (K) currents in the voltage-clamped lobster giant axon. These agents, which block the nerve action potential, reduce the maximum Na and K conductance increases associated with membrane depolarization. They also slow the rate at which the sodium conductance is increased and shift the (normalized) membrane conductance vs. voltage curves in the direction of depolarization along the voltage axis. All these effects are qualitatively similar to those resulting from the action of procaine on the voltage-clamped axon. One unusual effect of the tropine esters, noticeable particularly at large depolarization steps, is that they cause the late, K current to reach a peak and then fall off with increasing pulse duration. This effect has not been reported to occur as a result of procaine action. Tropine p-chlorophenyl acetate (TPClϕA), which differs from TPTA only by the substitution of a p-Cl for a p-CH3 group on the benzene ring, had a negligible effect on axonal excitability.


1988 ◽  
Vol 66 (2) ◽  
pp. 202-206 ◽  
Author(s):  
Elena Ruiz-Ceretti ◽  
Fabien DeLorenzi ◽  
Josée S. Lafond ◽  
Denis Chartier

Insulin stimulates ionic transport by the sodium pump and induces hyperpolarization in skeletal and cardiac muscle among other cells. The insulin-induced hyperpolarization in most cases can be inhibited by exposure to cardiac glycosides or metabolic inhibition. However, extracellular accumulation of K ions leaking from hypoxic cells in superfused preparations may distort the effects of insulin on the resting potential. We used standard microelectrode techniques and perfused rabbit hearts submitted to hypoxia and substrate deprivation to reinvestigate the effects of insulin (6.4 nM) on the membrane potential. The membrane depolarized by about 6 mV and the action potential was reduced to a sharp spike without overshoot. Insulin restored the resting potential to control values but did not change the action potential configuration substantially. The insulin-induced repolarization was not due to reuptake of potassium as revealed by spectrophotometric determinations of myocardial K content. In addition, the diffusion component of the resting potential measured after inhibition of the sodium pump with 10−4 M ouabain was not modified by insulin. Our results suggest that an increase in the contribution of electrogenic Na extrusion to the resting potential underlies the repolarizing effect of insulin of hypoxic substrate-deprived myocardium.


1960 ◽  
Vol 43 (3) ◽  
pp. 597-607 ◽  
Author(s):  
J. C. Dalton ◽  
W. J. Adelman

Experiments were performed to determine the quantitative relation existing between action potential and resting potential of the lobster giant axon. Resting potential changes were induced by either increasing the external potassium concentration or by reducing the external calcium concentration. For either treatment the action potential amplitude is proportional to the logarithm of the resting potential minus a constant. This constant is equivalent to the minimum resting potential at which a propagated spike is possible, and is larger for depolarization in low calcium than in high potassium. Thus the change in action potential per unit change in resting potential is greater in low external calcium than in high external potassium. Analog computer solutions to the Hodgkin-Huxley equations for squid axon membrane potentials show that, if the initial conditions are properly specified, the action potential is proportional to the logarithm of the potassium potential minus a constant. The experimental results and the analog computations suggest that reducing external calcium produces changes in the invertebrate axon that cannot be accounted for solely on the basis of alterations in the potassium potential.


1964 ◽  
Vol 47 (5) ◽  
pp. 975-986 ◽  
Author(s):  
Uichiro Kishimoto ◽  
William J. Adelman

The effects of detergents on squid giant axon action and resting potentials as well as membrane conductances in the voltage clamp have been studied. Anionic detergents (sodium lauryl sulfate, 0.1 to 1.0 mM; dimethyl benzene sulfonate, 1 to 20 mM, pH 7.6) cause a temporary increase and a later decrease of action potential height and the value of the resting potential. Cationic detergent (cetyl trimethyl ammonium chloride, 6 x 10-5M or more, pH 7.6) generally brings about immediate and irreversible decreases in the action and resting potentials. Non-ionic detergent (tween 80, 0.1 M, pH 7.6) causes a slight reversible reduction of action potential height without affecting the value of the resting potential. Both anionic and cationic detergents generally decrease the sodium and potassium conductances irreversibly. The effect of non-ionic detergent is to decrease the sodium conductance reversibly, leaving the potassium conductance almost unchanged.


1967 ◽  
Vol 50 (7) ◽  
pp. 1929-1953 ◽  
Author(s):  
Alfred Strickholm ◽  
B. Gunnar Wallin

The changes in membrane potential of isolated, single crayfish giant axons following rapid shifts in external ion concentrations have been studied. At normal resting potential the immediate change in membrane potential after a variation in external potassium concentration is quite marked compared to the effect of an equivalent chloride change. If the membrane is depolarized by a maintained potassium elevation, the immediate potential change due to a chloride variation becomes comparable to that of an equivalent potassium change. There is no appreciable effect on membrane potential when external sodium is varied, at normal or at a depolarized membrane potential. Starting from the constant field equation, expressions for the permeability ratios PCl/PK, PNa/PK, and for intracellular potassium and chloride concentrations are derived. At normal resting membrane potential, PCl/PK is 0.13 but at a membrane potential of -53 mv (external potassium level increased about five times) it is 0.85. The intracellular concentrations of potassium and chloride are estimated to be 233 and 34 mM, respectively, and it is pointed out that this is not compatible with ions distributed in a Nernst equilibrium across the membrane. It is also stressed that the information given by a plot of membrane potential vs. the logarithm of external potassium concentrations is very limited and rests upon several important assumptions.


1976 ◽  
Vol 67 (3) ◽  
pp. 369-380 ◽  
Author(s):  
J Villegas ◽  
C Sevcik ◽  
F V Barnola ◽  
R Villegas

The actions of grayanotoxin I, veratrine, and tetrodotoxin on the membrane potential of the Schwann cell were studied in the giant nerve fiber of the squid Sepioteuthis sepioidea. Schwann cells of intact nerve fibers and Schwann cells attached to axons cut lengthwise over several millimeters were utilized. The axon membrane potential in the intact nerve fibers was also monitored. The effects of grayanotoxin I and veratrine on the membrane potential of the Schwann cell were found to be similar to those they produce on the resting membrane potential of the giant axon. Thus, grayanotoxin I (1-30 muM) and veratrine (5-50 mug-jl-1), externally applied to the intact nerve fiber or to axon-free nerve fiber sheaths, produce a Schwann cell depolarization which can be reversed by decreasing the external sodium concentration or by external application of tetrodotoxin. The magnitude of these membrane potential changes is related to the concentrations of the drugs in the external medium. These results indicate the existence of sodium pathways in the electrically unexcitable Schwann cell membrane of S. sepioidea, which can be opened up by grayanotoxin I and veratrine, and afterwards are blocked by tetrodotoxin. The sodium pathways of the Schwann cell membrane appear to be different from those of the axolemma which show a voltage-dependent conductance.


1976 ◽  
Vol 68 (4) ◽  
pp. 405-420 ◽  
Author(s):  
B G Kennedy ◽  
P De Weer

Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4-dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin-insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels.


1961 ◽  
Vol 44 (6) ◽  
pp. 1055-1057 ◽  
Author(s):  
Kenneth S. Cole

The membrane current density, Im, in the squid giant axon has been calculated from the measured external current applied to the axon, Io, by the equation See PDF for Equation where Vm is the membrane potential under the current electrode and r1 and r2 are the external and internal longitudinal resistances. The original derivation of this equation included in one step an assumption of a linear relation between Im and Vm. It is shown that the same equation can be obtained without this restricting assumption.


Sign in / Sign up

Export Citation Format

Share Document