Characterization of monoclonal antibodies to rabbit renal cortical cells

1986 ◽  
Vol 250 (3) ◽  
pp. C506-C516 ◽  
Author(s):  
P. Ronco ◽  
M. Geniteau ◽  
P. Poujeol ◽  
C. Melcion ◽  
P. Verroust ◽  
...  

The immunological heterogeneity of the rabbit nephron was investigated using monoclonal antibodies. Seventeen antibodies have been produced by fusion of NS1 myeloma cells with spleen cells from BALB/c mice immunized with unfractionated rabbit renal cortical cell preparations. Sixteen antibodies reacted with proximal tubular cells: 11 with the brush border and 5 with basolateral membrane or intracytoplasmic components. Only one of the latter was specific for constituents of the proximal tubule. One antibody reacted with the cortical collecting tubule. Eight of the anti-brush-border antibodies were further characterized by immunoprecipitation of detergent-solubilized radiolabeled brush-border membrane vesicles. Seven proteins with subunits ranging in molecular weight from 90,000 to greater than 340,000 were identified. Systematic survey showed that one of these proteins with a subunit molecular weight of 115,000 exhibited leucine aminopeptidase activity. Selected monoclonal antibodies bound to Sepharose 4B immunoadsorbents were used to deplete solubilized brush-border membrane vesicles of a given antigen and to identify leucine aminopeptidase. Furthermore, the obtention of specific antibodies directed against the proximal tubule allowed us to set up a simple method for renal cell separation: isolated renal cortical cells could be depleted by 80% in proximal cells by passage over columns of Sepharose 6MB covalently linked with three different monoclonal anti-brush-border antibodies, thus leading to cell suspensions considerably enriched in tubule cells originating from the more distal segments of the nephron.

2002 ◽  
Vol 283 (4) ◽  
pp. C1155-C1162 ◽  
Author(s):  
Steven M. Grassl

Membrane transport pathways mediating transcellular secretion of urate across the proximal tubule were investigated in brush-border membrane vesicles (BBMV) isolated from avian kidney. An inside-positive K diffusion potential induced a conductive uptake of urate to levels exceeding equilibrium. Protonophore-induced dissipation of membrane potential significantly reduced voltage-driven urate uptake. Conductive uptake of urate was inhibitor sensitive, substrate specific, and a saturable function of urate concentration. Urate uptake was trans-stimulated by urate and cis-inhibited by p-aminohippurate (PAH). Conductive uptake of PAH was cis-inhibited by urate. Urate uptake was unaffected by an outward α-ketoglutarate gradient. In the absence of a membrane potential, urate uptake was similar in the presence and absence of an imposed inside-alkaline pH gradient or an outward Cl gradient. These observations suggest a uniporter-mediated facilitated diffusion of urate as a pathway for passive efflux across the brush border membrane of urate-secreting proximal tubule cells.


2001 ◽  
Vol 280 (5) ◽  
pp. F886-F894 ◽  
Author(s):  
Sharon L. Ashworth ◽  
Ruben M. Sandoval ◽  
Melanie Hosford ◽  
James R. Bamburg ◽  
Bruce A. Molitoris

Breakdown of proximal tubule cell apical membrane microvilli is an early-occurring hallmark of ischemic acute renal failure. Intracellular mechanisms responsible for these apical membrane changes remain unknown, but it is known that actin cytoskeleton alterations play a critical role in this cellular process. Our laboratory previously demonstrated that ischemia-induced cell injury resulted in dephosphorylation and activation of the actin-binding protein, actin depolymerizing factor [(ADF); Schwartz, N, Hosford M, Sandoval RM, Wagner MC, Atkinson SJ, Bamburg J, and Molitoris BA. Am J Physiol Renal Fluid Electrolyte Physiol 276: F544–F551, 1999]. Therefore, we postulated that ischemia-induced ADF relocalization from the cytoplasm to the apical microvillar microfilament core was an early event occurring before F-actin alterations. To directly investigate this hypothesis, we examined the intracellular localization of ADF in ischemic rat cortical tissues by immunofluorescence and quantified the concentration of ADF in brush-border membrane vesicles prepared from ischemic rat kidneys by using Western blot techniques. Within 5 min of the induction of ischemia, ADF relocalized to the apical membrane region. The length of ischemia correlated with the time-related increase in ADF in isolated brush-border membrane vesicles. Finally, depolymerization of microvillar F-actin to G-actin was documented by using colocalization studies for G- and F-actin. Collectively, these data indicate that ischemia induces ADF activation and relocalization to the apical domain before microvillar destruction. These data further suggest that ADF plays a critical role in microvillar microfilament destruction and apical membrane damage during ischemia.


Experiments performed on microperfused proximal tubules and brush-border membrane vesicles revealed that inorganic phosphate is actively reabsorbed in the proximal tubule involving a 2 Na + -HPO 2- 4 or H 2 PO 4 - co-transport step in the brush-border membrane and a sodium-independent exit step in the basolateral cell membrane. Na + - phosphate co-transport is competitively inhibited by arsenate. The transtubular transport regulation is mirrored by the brush-border transport step: it is inhibited by parathyroid hormone intracellularly mediated by cyclic AMP. Transepithelial inorganic phosphate (P i ) transport and Na + -dependent P i transport across the brush-border membrane correlates inversely with the P i content of the diet. Intraluminal acidification as well as intracellular alkalinization led to a reduction of transepithelial P i transport. Data from brush-border membrane vesicles indicate that high luminal H + concentrations reduce the affinity for Na + of the Na + -phosphate co-transport system, and that this mechanism might be responsible for the pH dependence of phosphate reabsorption. Contraluminal influx of P i from the interstitium into the cell could be partly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). It is not, however, changed when dicarboxylic acids are present or when the pH of the perfusate is reduced to pH 6. Sulphate is actively reabsorbed, involving electroneutral 2 Na + -SO 2 - 4 co-transport through the brush-border membrane. This transport step is inhibited by thiosulphate and molybdate, but not by phosphate or tungstate. The transtubular active sulphate reabsorption is not pH dependent, but is diminished by the absence of bicarbonate. The transport of sulphate through the contraluminal cell side is inhibited by DIDS and diminished when the capillary perfusate contains no bicarbonate or chloride. The latter data indicate the presence of an anion exchange system in the contraluminal cell membrane like that in the erythrocyte membrane.


1988 ◽  
Vol 249 (1) ◽  
pp. 247-253 ◽  
Author(s):  
Y Miyamoto ◽  
J L Coone ◽  
V Ganapathy ◽  
F H Leibach

The distribution and properties of the peptide-transport system in rabbit renal proximal tubule was examined with glycylsarcosine as the substrate and using brush-border-membrane vesicles derived from pars convoluta (outer cortex) and pars recta (outer medulla). The dipeptide was transported into these vesicles against a concentration gradient in the presence of an inward-directed H+ gradient, demonstrating the presence of a H+-coupled peptide-transport system in outer-cortical as well as outer-medullary brush-border membranes. Even though the transport was electrogenic and was energized by a H+ gradient in both membranes, the system was more active in outer medullary membranes than in outer cortical membranes. Kinetic analysis showed that, although the affinity of the transport system for glycylsarcosine was similar in both membrane preparations, the capacity of the system was significantly greater in outer medulla than in outer cortex. In addition, the pH profiles of the peptide-transport systems in these membrane preparations also showed dissimilarities. The greater dipeptide uptake in one membrane vis-à-vis the other may probably be due to the difference in the affinity of the transport system for H+ and/or the difference in peptide/H+ stoichiometry.


Sign in / Sign up

Export Citation Format

Share Document