Forskolin- but not ionomycin-evoked Cl- secretion in colonic epithelia depends on intact microtubules

1994 ◽  
Vol 266 (3) ◽  
pp. C661-C668 ◽  
Author(s):  
C. M. Fuller ◽  
R. J. Bridges ◽  
D. J. Benos

Several transport proteins are known to be trafficked to the cell membrane in response to appropriate secretagogues. In several cases, the response has been shown to be dependent on the cytoskeleton. We tested the hypothesis that the forskolin- and/or ionomycin-sensitive Cl- secretory response in colonic epithelia is dependent on an intact cytoskeleton. Using 125I- efflux as an assay for Cl- transport in the colonic epithelial cell line T84, we found that preincubation of the tissue for 3 h with either of two inhibitors of microtubule polymerization, nocodazole or colchicine, disrupted the cellular tubulin architecture and also reduced the forskolin- but not the ionomycin-evoked I- efflux. In contrast, brief exposure (4 min) to nocodazole was without effect on the forskolin-sensitive efflux, suggesting that the drug is not acting to block the stimulus-response pathway. An inactive structural analogue of colchicine, beta-lumicolchicine, had no inhibitory effect on either the forskolin-sensitive efflux or on microtubular structure. In a second model of Cl- secretion, the stripped rat colon, both colchicine and nocodazole reduced the forskolin-dependent short-circuit current by an average of 30-40%, suggesting a similar mechanism for insertion of Cl- channels into the plasma membrane. These findings suggest that the Cl- secretory response is dependent on microtubules and has a physiological role in the adenosine 3',5'-cyclic monophosphate-dependent, but not the Ca(2+)-dependent, Cl- secretion in colonic epithelia.

1997 ◽  
Vol 272 (3) ◽  
pp. C976-C988 ◽  
Author(s):  
D. C. Devor ◽  
A. K. Singh ◽  
R. J. Bridges ◽  
R. A. Frizzell

We evaluated effects of psoralens on Cl- secretion (short-circuit current, I(sc)) across T84 monolayers. Methoxsalen failed to increase I(sc). Several observations suggest that psoralens open cystic fibrosis transmembrane conductance regulator Cl- channels. 1) After activation of the Ca2+-dependent basolateral membrane K+ channel (K(Ca)) by 1-ethyl-2-benzimidazolinone or thapsigargin, methoxsalen (10 microM) further increased I(sc). 2) When added before carbachol (CCh), methoxsalen potentiated the I(sc) response to CCh, as predicted, if it increased apical Cl- conductance. 3) After establishment of a mucosal-to-serosal Cl- gradient and permeabilization of basolateral membrane with nystatin, psoralens increased Cl- current, which was inhibited by glibenclamide. In contrast, neither TS-TM calix[4]arene nor Cd2+, inhibitors of outwardly rectifying Cl- channels and the ClC-2 Cl-channel, respectively, inhibited psoralen-induced Cl- current. In contrast to their effects on Cl- conductance, psoralens failed to significantly affect basolateral membrane K+ conductance; subsequent addition of 1-ethyl-2-benzimidazolinone induced a large increase in K+ conductance. Also, in excised patches, methoxsalen failed to activate K(Ca). In addition to potentiating the peak response to CCh, psoralens induced a secondary, sustained response. Indeed, when added up to 60 min after return of CCh-induced I(sc) to baseline, psoralens induced a sustained I(sc). This sustained response was inhibited by atropine, demonstrating the requirement for continuous muscarinic receptor activation by CCh. This sustained response was inhibited also by verapamil, removal of bath Ca2+, and charybdotoxin. These results suggest that return of I(sc) to baseline after CCh stimulation is not due to downregulation of Ca2+ influx or K(Ca). Finally, we obtained similar results with psoralens in rat colon and primary cultures of murine tracheal epithelium. On the basis of these observations, we conclude that psoralens represent a novel class of Cl- channel openers that can be used to probe mechanisms underlying Ca2+-mediated Cl- secretion.


1993 ◽  
Vol 264 (1) ◽  
pp. C161-C168 ◽  
Author(s):  
W. W. Reenstra

Pretreating confluent T84 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA) inhibits adenosine 3',5'-cyclic monophosphate (cAMP)- and carbachol-induced Cl secretion. Both a sustained short-circuit current (Isc), seen after the addition of 50 microM 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPT-cAMP) and 100 microM 3-isobutyl-1-methylxanthine (IBMX), and a transient current, seen after the subsequent addition of 100 microM carbachol, are inhibited by 80% following pretreatment with 100 nM PMA for 2 h. Pretreatment with PMA has no effect on the level of cystic fibrosis transmembrane conductance regulator protein or apical cAMP-dependent Cl conductance. Carbachol does not induce an increase in apical Cl conductance. Basolateral K conductance was measured in monolayers treated with apical nystatin and exposed to a K gradient. Agonist-independent K conductance is 10-fold greater in Cl media than in gluconate media. Pretreatment with PMA inhibits agonist-independent K conductance by 57% in Cl media but stimulates K conductance by 1.9-fold in gluconate media. The addition of carbachol induces a transient increase in basolateral K conductance, and pretreatment with PMA inhibits the agonist-dependent K conductance by 66% in Cl media and by 92% in gluconate media. In Cl media, serosal barium, at 3 mM, inhibits agonist-independent K conductance but has no significant effect on the carbachol-induced conductance. In nonpermeabilized monolayers, serosal barium inhibits the cAMP-dependent Isc by 56% but has no effect on the carbachol-induced Isc. These results demonstrate that the primary effect of PMA on Cl secretion is not inhibition of apical Cl channels but inhibition of basolateral K channels.(ABSTRACT TRUNCATED AT 250 WORDS)


2015 ◽  
Vol 37 (1) ◽  
pp. 306-320 ◽  
Author(s):  
Yuan Hao ◽  
Cindy S.T. Cheung ◽  
Wallace C.Y. Yip ◽  
Wing-hung Ko

Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC) in a human bronchial epithelial cell line (16HBE14o-), and characterized the signal transduction pathways that allowed nobiletin to regulate electrolyte transport. Methods: The ISC measurement technique was used for transepithelial electrical measurements. Intracellular calcium ([Ca2+]i) and cAMP were also quantified. Results: Nobiletin stimulated a concentration-dependent increase in ISC, which was due to Cl- secretion. The increase in ISC was inhibited by a cystic fibrosis transmembrane conductance regulator inhibitor (CFTRinh-172), but not by 4,4'-diisothiocyano-stilbene-2,2'-disulphonic acid (DIDS), Chromanol 293B, clotrimazole, or TRAM-34. Nobiletin-stimulated ISC was also sensitive to a protein kinase A (PKA) inhibitor, H89, and an adenylate cyclase inhibitor, MDL-12330A. Nobiletin could not stimulate any increase in ISC in a cystic fibrosis (CF) cell line, CFBE41o-, which lacked a functional CFTR. Nobiletin stimulated a real-time increase in cAMP, but not [Ca2+]i. Conclusion: Nobiletin stimulated transepithelial Cl- secretion across human bronchial epithelia. The mechanisms involved activation of adenylate cyclase- and cAMP/PKA-dependent pathways, leading to activation of apical CFTR Cl- channels.


1980 ◽  
Vol 239 (3) ◽  
pp. G151-G160 ◽  
Author(s):  
W. L. McLennan ◽  
T. E. Machen ◽  
T. Zeuthen

Gastric mucosae from frogs and newborn pigs were used for in vitro investigation of the effects of Ba2+ (10 microM to 7 mM) on transepithelial potential difference (PD), resistance and conductance (G), short-circuit current (Isc), H+ secretion, and transepithelial fluxes of 36Cl-. Ba2+ in the serosal, but not the mucosal, solution of both preparations caused PD, G, Isc, and Cl- secretion (JnetCl, Isc conditions) to decrease, while H+ secretion remained constant. Because the oxyntic cells were most likely the site of action for Ba2+, these cells must have the capacity to secrete Cl- in excess of H+ ions. The inhibitory effect of Ba2+ was not due to competition in the serosal membrane by Ba2+ for surface charges, Ca2+ sites, Na+ sites, or Cl- sites. When [K+] in both the mucosal and serosal solutions or in just the serosal solution ([K+]s) alone was increased to 10 mM, the inhibitory effects of low [Ba2+] were reduced; however, at higher [Ba2+], Isc was stimulated. At least part of the Ba2+ effect seems to be due to blockage of K+ channels in the serosal membrane of oxyntic cells. High [K+]s also caused decreased PD and Isc (but increased G) with no change in H+ secretion. It is proposed that during Isc conditions, JnetCl involves a neutral Na+-dependent accumulation of Cl- within oxyntic cells and a passive, conductive efflux fromthe cells into the mucosal solution. Ba2+ and high [K+] may alter this transport by depolarizing and, under certain conditions, hyperpolarizing intracellular voltage.


2008 ◽  
Vol 139 (2_suppl) ◽  
pp. P107-P107
Author(s):  
Do-Yeon Cho ◽  
Illek Beate ◽  
Fischer Horst ◽  
Peter H Hwang

Problem Epithelial ion transport regulates hydration of respiratory mucosal surfaces, which promotes effective mucociliary clearance. Activators of chloride ion (Cl-) secretion, such as ascorbic acid (Vitamin C), may enhance the rheologic properties of mucus. Altered ion transport could play a role in the pathogenesis of chronic rhinosinusitis (CRS). The purpose of this study is to assess the electrophysiologic characteristics and role of vitamin C on the nasal mucosa of CRS patients. Methods Nasal tissues (uncinate process, inferior turbinate, nasal septum) were obtained from five CRS patients during sinus surgery and mounted on disks with open areas of 0.03cm2 to 0.71cm2 between Ussing hemichambers. Short-circuit current (Isc) was continuously recorded, and at 50-s intervals transepithelial voltage was clamped from 0 to 2mV. Serosa-to-mucosa-directed Cl- gradient was applied to increase the electrochemical driving force for Cl- exit across the apical membrane. Results Isc decreased when the epithelial Na+ channel blocker (amiloride) was added to the luminal side of the chamber indicating that the tissues were Na+ absorbing. Addition of the cAMP-elevating agonist forskolin induced a Cl- secretory response and exposure of the apical airway surface to vitamin C(600uM) stimulated the transepithelial Cl- secretion to 60% of the forskolin-stimulated Isc. The contribution of the Na+/K+/2Cl- cotransporter to the Cl- secretory response was verified by addition of bumetamide. Glybenclamide was used to probe for the CFTR-Cl- conductance. These results were observed in all specimens. Conclusion Freshly excised human nasal epithelium is easily accessible and its bioelectric measurements can be applied as a functional measurement of ion transport in epithelial diseases. Vitamin C may serve as a biological regulator of CFTR-mediated Cl- secretion in human nasal epithelia. Significance Vitamin C in human nasal epithelia may represent a potential target for the complementary treatment of thickened mucus secretions by enhancing epithelial fluid secretion in diseases, such as CRS or cystic fibrosis.


1987 ◽  
Vol 253 (4) ◽  
pp. G483-G488 ◽  
Author(s):  
G. D. Potter ◽  
R. Lester ◽  
S. M. Burlingame ◽  
P. A. Mitchell ◽  
K. L. Schmidt

Failure to absorb bile acids by the ileum leads to fluid secretion by the colon and diarrhea in adults. The infant ileum, however, does not actively transport bile acids. Therefore, we investigated the effect of taurodeoxycholic acid (TDCA) on ion transport in the colon of rabbits 7-10 days old. We mounted distal colon from infant and adult rabbits in modified Ussing chambers and exposed the mucosal or serosal surfaces to TDCA. In the adult, 50 microM TDCA produced an increase in short-circuit current (delta Isc = 1.0 +/- 0.3 mu eq . h-1 . cm-2, P less than 0.05) and Cl secretion. In the infant, the effect was different, Isc was reduced (delta Isc = -1.1 +/- 0.2 mu eq . h-1 . cm-2, P less than 0.01) and ion flux was not altered. Microscopy demonstrated that the infant epithelium was not significantly damaged by exposure to TDCA at these concentrations. The infant colon was, however, capable of a secretory response to a variety of agonists including theophylline, carbachol, bradykinin, serotonin, and 12,13-dibutyryl phorbol ester. The infant rabbit distal colon lacks a secretory response to TDCA during that period when the ileum cannot transport bile acids.


1996 ◽  
Vol 271 (5) ◽  
pp. L775-L784 ◽  
Author(s):  
D. C. Devor ◽  
A. K. Singh ◽  
R. A. Frizzell ◽  
R. J. Bridges

We evaluated the effects of the novel benzimidazolone, 1-ethyl-2-benzimidazolinone (1-EBIO), on Cl- secretion across T84 monolayers. 1-EBIO stimulated a sustained Cl- secretory response at a half-maximal effective concentration of 490 microM. Charybdotoxin (CTX) inhibited the 1-EBIO-induced short-circuit current (Isc) with an inhibitory constant (Ki) of 3.6 nM, whereas 293B, an inhibitor of adenosine 3',5'-cyclic monophosphate-activated K+ channels, had no effect on the current induced by 1-EBIO. In contrast, CTX failed to inhibit the 293B-sensitive forskolin-induced Isc. The above results suggested that 1-EBIO may be activating the basolateral membrane Ca(2+)-dependent K+ channel (KCa) in these cells. This was further confirmed using nystatin to permeabilize the apical membrane in the presence of a mucosa-to-serosa K+ gradient and determining the effects of 1-EBIO on the basolateral K+ current (IK). Under these conditions, 1-EBIO induced a large increase in IK that was blocked by CTX. In membrane vesicles prepared from T84 cells, 1-EBIO stimulated 86Rb+ uptake in a CTX-sensitive manner; the Ki for inhibition by CTX was 3.5 nM. Similar to our intact monolayer studies, this 86Rb+ uptake was not blocked by 293B. The effects of 1-EBIO on the KCa in T84 cells was determined in excised inside-out patches. 1-EBIO (100 microM) increased the product of the number of channels and the open channel probability from 0.09 +/- 0.03 to 1.17 +/- 0.27 (n = 8); this effect on KCa activity required a minimal level of free Ca2+. Similar to its effect on T84 cells, 1-EBIO stimulated a sustained Cl- secretory current in rat colonic epithelium, which was partially blocked by CTX. Finally, 1-EBIO stimulated a sustained Cl- secretory response in primary cultures of murine tracheal epithelium. We conclude that the benzimidazolone, 1-EBIO, stimulates Cl- secretion in secretory epithelia via the direct activation of a Kca. 1-EBIO is the first pharmacological opener of this important class of epithelial K+ channels to be identified.


1992 ◽  
Vol 263 (6) ◽  
pp. C1190-C1199 ◽  
Author(s):  
L. L. Clarke ◽  
A. M. Paradiso ◽  
R. C. Boucher

The mechanism by which receptors coupled to phospholipase C (PLC) induce Cl- secretion in amiloride-pretreated cultures of human nasal epithelial (HNE) cultures was investigated. Histamine (10(-4) M, basolateral administration) stimulated a rapid increase in equivalent short-circuit current, an index of Cl- secretion, that returned to baseline within 5 min. Intracellular recordings with double-barreled Cl(-)-selective microelectrodes showed that the apical and basolateral membrane potentials rapidly hyperpolarized, the fractional resistance of the apical membrane increased, and the transepithelial resistance decreased in response to histamine. Intracellular Cl- activity remained constant. Equivalent circuit analysis revealed that the early portion (< 0.9 min) of the Cl- secretory response was driven by an activation of a hyperpolarizing basolateral conductance, likely K+, whereas the later (> 0.9 min) phase of Cl- secretion reflects activation of the apical membrane Cl- conductance. Histamine raised intracellular Ca2+ (Ca2+i) measured by fura-2 in HNE with a potency similar to that observed for induction of Cl- secretion. Both intracellular release and plasma membrane influx pathways were identified, typical of receptor-mediated activation of PLC. The intracellular Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (15 microM), coupled with reduced bathing solution Ca2+, blunted the rise in Ca2+i and the net transepithelial Cl- secretory response to histamine. We conclude that 1) histamine induced Cl- secretion in HNE by a sequential mechanism: the rapid initial component reflects activation of the basolateral K+ conductance, and the later component reflects activation of an apical Cl- conductance; and 2) the level of Ca2+i may participate in the activation of both the basolateral and apical conductances.


2011 ◽  
pp. 921-931 ◽  
Author(s):  
M. HOCK ◽  
M. SOTÁK ◽  
M. KMENT ◽  
J. PÁCHA

Increased colonic Cl- secretion was supposed to be a causative factor of diarrhea in inflammatory bowel diseases. Surprisingly, hyporesponsiveness to Cl- secretagogues was later described in inflamed colon. Our aim was to evaluate changes in secretory responses to cholinergic agonist carbachol in distal and proximal colon during colitis development, regarding secretory activity of enteric nervous system (ENS) and prostaglandins. Increased responsiveness to carbachol was observed in both distal and proximal colon after 3 days of 2 % dextran sodium sulfate (DSS) administration. It was measured in the presence of mucosal Ba2+ to emphasize Cl- secretion. The described increase was abolished by combined inhibitory effect of tetrodotoxin (TTX) and indomethacin. Indomethacin also significantly reduced TTX-sensitive current. On the 7th day of colitis development responsiveness to carbachol decreased in distal colon (compared to untreated mice), but did not change in proximal colon. TTX-sensitive current did not change during colitis development, but indomethacin-sensitive current was significantly increased the 7th day. Decreased and deformed current responses to serosal Ba2+ were observed during colitis induction, but only in proximal colon. We conclude that besides inhibitory effect of DSS on distal colon responsiveness, there is an early stimulatory effect that manifests in both distal and proximal colon.


Sign in / Sign up

Export Citation Format

Share Document