bHLH transcription factor MyoD affects myosin heavy chain expression pattern in a muscle-specific fashion

2001 ◽  
Vol 280 (2) ◽  
pp. C408-C413 ◽  
Author(s):  
David J. Seward ◽  
John C. Haney ◽  
Michael A. Rudnicki ◽  
Steven J. Swoap

A strong correlative pattern between MyoD gene expression and myosin heavy chain IIB (MHC IIB) gene expression exists. To test whether this correlative relationship is causative, MHC gene expression in muscles from MyoD(−/−) mice was analyzed. The MHC IIB gene was not detectable in the MyoD(−/−) diaphragm, whereas the MHC IIB protein made up 10.0 ± 1.7% of the MHC protein pool in the wild-type (WT) mouse diaphragm. Furthermore, the MHC IIA protein was not detectable in the MyoD(−/−) biceps brachii, and the MHC IIB protein was overexpressed in the masseter. To examine whether MyoD is required for the upregulation of the MHC IIB gene within slow muscle after disuse, MyoD(−/−) and WT hindlimb musculature was unweighted. MyoD(−/−) exhibited a diminished response in the upregulation of the MHC IIB mRNA within the soleus muscle as a result of the hindlimb unweighting. Collectively, these data suggest that MyoD plays a role in the MHC profile in a muscle-specific fashion.

2006 ◽  
Vol 101 (4) ◽  
pp. 1053-1059 ◽  
Author(s):  
J. Chadwick Smith ◽  
W. Allen Moore ◽  
Stephen J. Goldberg ◽  
Mary S. Shall

Previously, we showed that artificial rearing using the “pup in a cup” model results in decreased tongue activity and caused some minor alterations in the tongue retrusor musculature. However, the artificial rearing time frame previously chosen was brief (11 days). The purpose of the present investigation was to extend the artificial rearing period from postnatal days 3 to 21 (P21) to determine whether significant alterations occur as a result of this reduced tongue use. Several changes in contractile properties due to the artificial rearing process were observed, which fully recovered by postnatal days 41 to 42 (P41–2). These changes included a shorter twitch contraction time, shorter twitch half-relaxation time, and decreased fatigue resistance. Styloglossus muscle exhibited more neonatal myosin heavy chain (MHC) isoform at P21 for the artificially reared (AR) group. Changes that were persistent at P41–2 were also observed. Maximum tetanic tension was lower for the AR group at P21 and P41–2 compared with their dam-reared counterparts. Twitch tension was also lower by P41–2 in the AR group. At P41–2, the AR group exhibited an increase in MHC IIa and a decrease in MHC IIb for the styloglossus muscle. In addition, the AR group exhibited a decreased MHC IIb for the long head of the biceps brachii at P41–2. Our results are similar to other models of hindlimb immobilization and suspension. By extending our artificial rearing period, this reduced tongue activity induced acute changes and alterations in the tongue retrusor musculature that persisted into early adulthood.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 871-883 ◽  
Author(s):  
K.E. Yutzey ◽  
J.T. Rhee ◽  
D. Bader

A unique myosin heavy chain cDNA (AMHC1), which is expressed exclusively in the atria of the developing chicken heart, was isolated and used to study the generation of diversified cardiac myocyte cell lineages. The pattern of AMHC1 gene expression during heart formation was determined by whole-mount in situ hybridization. AMHC1 is first activated in the posterior segment of the heart when these myocytes initially differentiate (Hamburger and Hamilton stage 9+). The anterior segment of the heart at this stage does not express AMHC1 although the ventricular myosin heavy chain isoform is strongly expressed beginning at stage 8+. Throughout chicken development, AMHC1 continues to be expressed in the posterior heart tube as it develops into the diversified atria. The early activation of AMHC1 expression in the posterior cardiac myocytes suggests that the heart cells are diversified when they differentiate initially and that the anterior heart progenitors differ from the posterior heart progenitors in their myosin isoform gene expression. The expression domain of AMHC1 can be expanded anteriorly within the heart tube by treating embryos with retinoic acid as the heart primordia fuse. Embryos treated with retinoic acid prior to the initiation of fusion of the heart primordia express AMHC1 throughout the entire heart-forming region and fusion of the heart primordia is inhibited. These data indicate that retinoic acid treatment produces an expansion of the posterior (atrial) domain of the heart and suggests that diversified fates of cardiomyogenic progenitors can be altered.


2006 ◽  
Vol 84 (8-9) ◽  
pp. 935-941 ◽  
Author(s):  
Baohua Wang ◽  
Jingping Ouyang ◽  
Zhengyuan Xia

Thyroid hormone-induced cardiac hypertrophy is similar to that observed in physiological hypertrophy, which is associated with high cardiac contractility and increased α-myosin heavy chain (α-MHC, the high ATPase activity isoform) expression. In contrast, angiotensin II (Ang II) induces an increase in myocardial mass with a compromised contractility accompanied by a shift from α-MHC to the fetal isoform β-MHC (the low ATPase activity isoform), which is considered as a pathological hypertrophy and inevitably leads to the development of heart failure. The present study is designed to assess the effect of thyroid hormone on angiotensin II-induced hypertrophic growth of cardiomyocytes in vitro. Cardiomyocytes were prepared from hearts of neonatal Wistar rats. The effects of Ang II and 3,3′,5-triiodo-thyronine (T3) on incorporations of [3H]-thymine and [3H]-leucine, MHC isoform mRNA expression, PKC activity, and PKC isoform protein expression were studied. Ang II enhanced [3H]-leucine incorporation, β-MHC mRNA expression, PKC activity, and PKCε expression and inhibited α-MHC mRNA expression in cardiomyocytes. T3 treatment prevented Ang II-induced increases in PKC activity, PKCε, and β-MHC mRNA overexpression and favored α-MHC mRNA expression. Thyroid hormone appears to be able to reprogram gene expression in Ang II-induced cardiac hypertrophy, and a PKC signal pathway may be involved in such remodeling process.


Sign in / Sign up

Export Citation Format

Share Document