Hypothalamic paraventricular nucleus, but not vasopressin, participates in chronic hyperactivity of the HPA axis in diabetic rats

2006 ◽  
Vol 290 (2) ◽  
pp. E243-E250 ◽  
Author(s):  
Dóra Zelena ◽  
Ludmila Filaretova ◽  
Zsuzsa Mergl ◽  
István Barna ◽  
Zsuzsanna E. Tóth ◽  
...  

Diabetes mellitus (DM), as chronic stress activates the hypothalamo-pituitary-adrenocortical axis. We examined whether arginine vasopressin (AVP) and the hypothalamic paraventricular nucleus (PVN) participate in DM-induced chronic stress symptoms. AVP-deficient Brattleboro or PVN-lesioned Wistar rats were used with heterozygous or sham-operated controls. The rats were studied 2 wk after a single injection of streptozotocin. The appearance of DM (enhanced water consumption and blood glucose elevation) and the chronic stress-like somatic changes (body weight decrease, thymus involution, adrenal gland hypertrophy) were not influenced by the lack of AVP. By contrast, PVN lesion significantly attenuated DM-induced thymus involution and adrenal gland hypertrophy as well as the increase in water consumption. The corticotropin-releasing hormone mRNA in PVN was diminished by DM and elevated by the lack of AVP without interaction. DM elevated the proopiomelanocortin (POMC) mRNA in the anterior lobe of the pituitary. The lack of AVP had no effect, whereas lesioning the PVN significantly diminished the elevation. The elevated basal corticosterone plasma levels detectable in DM were influenced neither by the lack of AVP nor by lesioning the PVN. Thus the lack of AVP had no influence on DM-induced chronic stress symptoms, but lesioning the PVN attenuated part of them. However, the lack of elevation in POMC mRNA after PVN lesion, together with the maintained corticosterone elevation, suggests that direct adrenal gland activation occurs in untreated DM.

2001 ◽  
Vol 281 (4) ◽  
pp. R1114-R1118 ◽  
Author(s):  
Tetsuro Shirasaka ◽  
Satoshi Miyahara ◽  
Takato Kunitake ◽  
Qing-Hua Jin ◽  
Kazuo Kato ◽  
...  

Orexins, also called hypocretins, are newly discovered hypothalamic peptides that are thought to be involved in various physiological functions. In spite of the fact that orexin receptors, especially orexin receptor 2, are abundant in the hypothalamic paraventricular nucleus (PVN), the effects of orexins on PVN neurons remain unknown. Using a whole cell patch-clamp recording technique, we investigated the effects of orexin-B on PVN neurons of rat brain slices. Bath application of orexin-B (0.01–1.0 μM) depolarized 80.8% of type 1 ( n = 26) and 79.2% of type 2 neurons tested ( n = 24) in the PVN in a concentration-dependent manner. The effects of orexin-B persisted in the presence of TTX (1 μM), indicating that these depolarizing effects were generated postsynaptically. Addition of Cd2+(1 mM) to artificial cerebrospinal fluid containing TTX (1 μM) significantly reduced the depolarizing effect in type 2 neurons. These results suggest that orexin-B has excitatory effects on the PVN neurons mediated via a depolarization of the membrane potential.


1993 ◽  
Vol 128 (6) ◽  
pp. 485-492 ◽  
Author(s):  
Sandra Ceccatelli ◽  
Catello Orazzo

Using in situ hybridization we have studied the effects of different types of stressors, such as ether, immobilization, cold and swimming, on the expression of several peptide messenger ribonucleic acids (mRNAs) in the hypothalamic paraventricular nucleus of adult male rats. Paraventricular nucleus sections were hybridized using synthetic oligonucleotide probes complementary to mRNA for corticotropin-releasing hormone, neurotensin, enkephalin and thyrotropin-releasing hormone. A clear upregulation of neurotensin mRNA was seen after ether and, to a lesser extent, after immobilization stress, whereas after the two other stressors neurotensin mRNA was undetectable, as in control rats. An increase in enkephalin mRNA was observed in a selective region of the dorsal part of the medioparvocellular subdivision of the paraventricular nucleus only after ether and immobilization stress. No significant changes were seen in corticotropin-releasing hormone and thyrotropin-releasing hormone mRNA levels in any of the experimental paradigms. The present results show selective changes for various peptide mRNAs in the paraventricular nucleus after various types of stress. Significant effects could be demonstrated only on neurotensin and enkephalin mRNA after ether and immobilization stress. This suggests that adaptive changes in the rate of synthesis, processing and transport of the peptide may develop over a longer period of time.


2013 ◽  
Vol 551 ◽  
pp. 43-46 ◽  
Author(s):  
Dan Wang ◽  
Hao Feng ◽  
Ying-Shun Li ◽  
De-Lai Qiu ◽  
Hua Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document