Melanin-concentrating hormone stimulates human growth hormone secretion: a novel effect of MCH on the hypothalamic-pituitary axis

2006 ◽  
Vol 290 (5) ◽  
pp. E982-E988 ◽  
Author(s):  
Gabriella Segal-Lieberman ◽  
Hadara Rubinfeld ◽  
Moran Glick ◽  
Noga Kronfeld-Schor ◽  
Ilan Shimon

Melanin-concentrating hormone (MCH), a 19-amino acid orexigenic (appetite-stimulating) hypothalamic peptide, is an important regulator of energy homeostasis. It is cleaved from its precursor prepro-MCH (ppMCH) along with several other neuropeptides whose roles are not fully defined. Because pituitary hormones such as growth hormone (GH), ACTH, and thyroid-stimulating hormone affect body weight and composition, appetite, insulin sensitivity, and lipoprotein metabolism, we investigated whether MCH exerts direct effects on the human pituitary to regulate energy balance using dispersed human fetal pituitaries (21–22 wk gestation) and cultured GH-secreting adenomas. We found that MCH receptor-1 (MCH-R1), but not MCH receptor-2, is expressed in both normal (fetal and adult) human pituitary tissues and in GH cell adenomas. MCH (10 nM) stimulated GH release from human fetal pituitary cultures by up to 62% during a 4-h incubation ( P < 0.05). Interestingly, neuropeptide EI (10 nM), which is also cleaved from ppMCH, increased human GH secretion by up to 124% in fetal pituitaries. A milder, albeit significant, induction of GH secretion by MCH (20%) was seen in cultured GH-secreting pituitary adenomas. A comparable stimulation of GH secretion was seen when cultured mouse pituitary cells were treated with MCH. Treatment of cultured GH adenoma cells with MCH (100 nM) induced extracellular signal-regulated kinases 1 and 2 phosphorylation, suggesting activation of MCH-R1. In aggregate, these data suggest that MCH may regulate pituitary GH secretion and imply a potential cross-talk mechanism between appetite-regulating neuropeptides and pituitary hormones.

1987 ◽  
Vol 115 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Eric F. Adams ◽  
Maria S. Venetikou ◽  
Christine A. Woods ◽  
S. Lacoumenta ◽  
J. M. Burrin

Abstract. Neuropeptide Y (NPY) is a 36 amino acid peptide, widely distributed throughout the brain and is found in hypothalamic neurones. This latter finding suggests that NPY may possess a hypophysiotropic function. A number of studies have demonstrated effects of NPY on LH and GH secretion by rat pituitary cells. We report here the results of experiments investigating the effects of NPY on GH secretion by tumorous human somatotropic pituitary cells in culture. NPY (0.25–25 nmol/l) inhibited GH secretion by 20–53%, the maximal effect depending upon the tumour studied. The potency of NPY was less than that of somatostatin (SRIH). The stimulatory effects of growth hormone releasing factor (GHRH) and theophylline were reduced by NPY, but NPY did not modify the inhibitory effect of SRIH on GH secretion. It is concluded that NPY may be involved in the control of GH secretion, at least by tumorous human pituitary somatotropes.


1987 ◽  
Vol 114 (4) ◽  
pp. 465-469 ◽  
Author(s):  
Gian Paolo Ceda ◽  
Robert G. Davis ◽  
Andrew R. Hoffman

Abstract. Glucocorticoids have been shown to have both stimulatory and suppressive effects on GH secretion in vitro and in vivo. In order to study the kinetics of glucocorticoid action on the somatotrope, cultured rat pituitary cells were exposed to dexamethasone for varying periods of time. During short-term incubations (≤ 4 h), dexamethasone inhibited GHRH and forskolin-elicited GH secretion, but during longer incubation periods, the glucocorticoid enhanced both basal and GHRH-stimulated GH release. The inhibitory effect of brief dexamethasone exposure was also seen in cells which previously had been exposed to dexamethasone. In addition, growth hormone secretion from cultured rat and human somatotropinoma cells was inhibited by a brief exposure to dexamethasone. Thus, the nature of glucocorticoid action on the isolated cultured somatotrope is biphasic, with brief exposure inhibiting, and more prolonged exposure stimulating GH secretion.


2007 ◽  
Vol 292 (6) ◽  
pp. E1750-E1762 ◽  
Author(s):  
Xinyan Wang ◽  
Mable M. S. Chu ◽  
Anderson O. L. Wong

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent growth hormone (GH)-releasing factor in lower vertebrates. However, its functional interactions with other GH regulators have not been fully characterized. In fish models, norepinephrine (NE) inhibits GH release at the pituitary cell level, but its effects on GH synthesis have yet to be determined. We examined adrenergic inhibition of PACAP-induced GH secretion and GH gene expression using grass carp pituitary cells as a cell model. Through activation of pituitary α2-adrenoreceptors, NE or the α2-agonist clonidine reduced both basal and PACAP-induced GH release and GH mRNA expression. In carp pituitary cells, clonidine also suppressed cAMP production and intracellular Ca2+ levels and blocked PACAP induction of these two second messenger signals. In GH3 cells transfected with a reporter carrying the grass carp GH promoter, PACAP stimulation increased GH promoter activity, and this stimulatory effect could be abolished by NE treatment. In parallel experiments, clonidine reduced GH primary transcript and GH promoter activity without affecting GH mRNA stability, and these inhibitory actions were mimicked by inhibiting adenylate cyclase (AC), blocking protein kinase A (PKA), removing extracellular Ca2+ in the culture medium, or inactivating L-type voltage-sensitive Ca2+ channels (VSCC). Since our recent studies have shown that PACAP can induce GH secretion in carp pituitary cells through cAMP/PKA- and Ca2+/calmodulin-dependent mechanisms, these results, taken together, suggest that α2-adrenergic stimulation in the carp pituitary may inhibit PACAP-induced GH release and GH gene transcription by blocking the AC/cAMP/PKA pathway and Ca2+ entry through L-type VSCC.


1995 ◽  
Vol 75 (1) ◽  
pp. 57-61 ◽  
Author(s):  
C. Farmer ◽  
H. Lapierre

Pituitaries from female Yorkshire pig fetuses (90 d, n = 26; 110 d, n = 17) and 6-mo-old pigs (n = 5) were enzymatically dispersed, plated, and cultured for 47 h. The cells were then rinsed and incubated for 22 h with testing media containing 0, 50, 100, 200, 300 or 400 ng mL−1 of IGF-I. Half of the wells from each concentration of IGF-I were then incubated for an additional 3 h with concentrations of IGF-I similar to those in the previous incubation, while the other half also had GRF added to the testing media to reach a final concentration of 10−8 M. Culture media were then collected from all the wells, were frozen, and later assayed for GH. Irrespective of whether GRF was present, IGF-I decreased pituitary secretion of GH (P < 0.001). A significant negative response to IGF-I was already present at the dose of 50 ng mL−1 (P < 0.0001). However, the extent of the GH response to IGF-I seen in pigs of various ages differed depending on whether GRF was present. The present results therefore establish that IGF-I does exert a negative feedback on pituitary GH secretion in swine and that the age-related changes in this feedback are dependent on the presence of GRF. In swine, it appears that high circulating concentrations of GH in late-gestation fetuses are not a result of a lesser sensitivity of the somatotroph to the inhibitory actions of IGF-I. Key words: Pig, cell culture, pituitary, IGF-I, growth hormone, age


1986 ◽  
Vol 112 (3) ◽  
pp. 345-350 ◽  
Author(s):  
Dolores Collado Escobar ◽  
Lucia M. Vicentini ◽  
Ezio Ghigo ◽  
Enrica Ciccarelli ◽  
Luciana Usellini ◽  
...  

Abstract. It has been reported that rat growth hormone releasing factor (rat GRF-43), similarly to the two human GRFs (GRF-40 and 44) stimulates adenylate cyclase activity in pituitary cells. Controversial findings have been presented by two different groups on the action of GRF on phosphoinositides (PI) metabolism, a phenomenon linked to Ca++ – mediated intracellular mechanisms. In the work to be reported, we evaluated the accumulation of inositol phosphates induced by GRF exposure in primary cultures of rat and human pituitary cells. Addition of rat GRF-43 to rat pituitary cells at doses up to 1 μm had no effect on inositol phosphates accumulation, while already at a dose as low as 0.05 nm it increased growth hormone secretion in the incubation medium significantly. In the same cell system, TRH, a known activator of PI breakdown, significantly increased [3H]inositol phosphates. In primary cultures of human somatotrophs from acromegalic subjects as in rats, addition of hpGRF-40 and also of TRH did not elicit any modification in the accumulation of [3H]inositol phosphates. Consistent with in vivo findings, both peptides induced a significant release of GH in the medium. Our results show that the GH releasing effect of GRF does not involve the hydrolysis of phosphatidylinositol in normal rat as well as in tumoral human somatotrophs. In addition it appears that the anomalous response of TRH on adenomatous cells from acromegalic patients is differently mediated in respect to the action of the tripeptide on normal lactotrophs and thyrotrophs.


1989 ◽  
Vol 122 (3) ◽  
pp. 657-660 ◽  
Author(s):  
G. Caldwell ◽  
G. Hart ◽  
E. M. Kohner ◽  
J. M. Burrin

ABSTRACT The mechanism responsible for the suppression of GH secretion in hyperglycaemia and hypoglyceamia in rats has been investigated using perifusion of anterior pituitary cells. When perifused with Krebs-Ringer bicarbonate containing normal (5 mmol/l), high (20 mmol/l) and low (1 mmol/l) concentrations of glucose, the GH responses to GH-releasing factor (GRF) were 85 ± 5, 85·5 ± 5·4 and 89 ± 3·0 (s.e.m.)% respectively compared with the initial response to GRF at 5 mmol/l in each column. The mean GH response to GRF from anterior pituitary cells of normal rats was 6·58 ± 0·88 μg/three pituitaries, which was not statistically different from that of cells from rats with streptozotocin-induced diabetes (5·40 ± 0·68 μg/three pituitaries). It is concluded that GH suppression in diabetic rats and during hypoglycaemia is not mediated by changes in the GH response to GRF. Journal of Endocrinology (1989) 122, 657–660


1999 ◽  
Vol 276 (5) ◽  
pp. R1351-R1358 ◽  
Author(s):  
N. Shah ◽  
W. S. Evans ◽  
J. D. Veldhuis

The neuroendocrine mechanisms by which estradiol drives growth hormone (GH) secretion in the human are poorly defined. Here we investigate estrogen’s specific regulation of the 24-h pulsatile, nyctohemeral, and entropic modes of GH secretion in healthy postmenopausal women. Volunteers ( n = 9) received randomly ordered placebo versus estradiol-17β (1 mg micronized steroid twice daily orally) treatment for 7–10 days and underwent blood sampling at 10-min intervals for 24 h to capture GH release profiles quantitated in a high-sensitivity chemiluminescence assay. Pulsatile GH secretion was appraised via deconvolution analysis, nyctohemeral GH rhythms by cosinor analysis, and the orderliness of GH release patterns via the approximate entropy statistic. Mean (±SE) 24-h serum GH concentrations approximately doubled on estrogen treatment (viz., from 0.31 ± 0.03 to 0.51 ± 0.07 μg/l; P = 0.033). Concomitantly, serum insulin-like growth factor-I (IGF-I), luteinizing hormone, and follicle-stimulating hormone concentrations fell, whereas thyroid-stimulating hormone and prolactin levels rose ( P < 0.01). The specific neuroendocrine action of estradiol included 1) a twofold amplified mass of GH secreted per burst, with no significant changes in basal GH release, half-life, pulse frequency, or duration; 2) an augmented amplitude and mesor of the 24-h rhythm in GH release, with no alteration in acrophase; and 3) greater disorderliness of GH release (higher approximate entropy). These distinctive and dynamic reactions to estrogen are consistent with partial withdrawal of IGF-I’s negative feedback and/or accentuated central drive to GH secretion.


1979 ◽  
Vol 82 (2) ◽  
pp. 193-197 ◽  
Author(s):  
S. HARVEY ◽  
C. G. SCANES ◽  
A. CHADWICK ◽  
G. BORDER ◽  
N. J. BOLTON

SUMMARY The effects of a chicken hypothalamic extract (HE) on the secretion of prolactin and growth hormone (GH) in vivo have been investigated by radioimmunoassay in the domestic fowl. Different i.v. doses of HE (0·25–25 HE equivalents/kg body weight) had no effect on GH secretion in conscious or anaesthetized cockerels. In both groups of birds the concentration of plasma prolactin was significantly increased within 10 min of administration of the extract. Extracts of other brain tissues (cerebral cortex, cerebellum and medulla oblongata) had no stimulatory effect on prolactin or GH secretion. Release of both prolactin and GH by dispersed pituitary cells and by hemipituitary glands in vitro was enhanced following incubation with HE (5 hypothalami equivalents/ml) or with single whole hypothalami respectively. Other brain tissues (cerebellum, optic lobes and medulla oblongata) had no effect on the concentration of prolactin or GH released by incubated hemipituitary glands.


1987 ◽  
Vol 116 (2) ◽  
pp. 287-292 ◽  
Author(s):  
Maria S. Venetikou ◽  
Jacky M. Burrin ◽  
Christine A. Woods ◽  
Tom H. Yeo ◽  
Judith Brownell ◽  
...  

Abstract. Two novel dopaminergic drugs, designated CV 205-502 and CQP 201-403 have recently been developed by Sandoz Pharmaceuticals Ltd (Basle, Switzerland). The effects of these drugs on PRL and GH secretion by normal rat and tumorous human pituitary cells in vitro have been investigated. Low doses of both CV 205-502 and CQP 201-403 immediately and profoundly suppressed PRL secretion, which failed to recover up to 7 h after removal of the drugs. Similarly, CQP 201-403 significantly suppressed basal GH secretion by human pituitary somatotropic tumours in culture, and both drugs significantly reduced the stimulatory effect of GHRH. These effects are more potent and longer acting than the previously described in vitro effects of bromocriptine. It is concluded that CV 205502 and CQP 201-403 hold potential for the treatment of patients with hyperprolactinaemia and, possibly, also in patients with acromegaly.


Sign in / Sign up

Export Citation Format

Share Document