Negative feedback of insulin-like growth factor-I on growth hormone secretion by porcine pituitary cells

1995 ◽  
Vol 75 (1) ◽  
pp. 57-61 ◽  
Author(s):  
C. Farmer ◽  
H. Lapierre

Pituitaries from female Yorkshire pig fetuses (90 d, n = 26; 110 d, n = 17) and 6-mo-old pigs (n = 5) were enzymatically dispersed, plated, and cultured for 47 h. The cells were then rinsed and incubated for 22 h with testing media containing 0, 50, 100, 200, 300 or 400 ng mL−1 of IGF-I. Half of the wells from each concentration of IGF-I were then incubated for an additional 3 h with concentrations of IGF-I similar to those in the previous incubation, while the other half also had GRF added to the testing media to reach a final concentration of 10−8 M. Culture media were then collected from all the wells, were frozen, and later assayed for GH. Irrespective of whether GRF was present, IGF-I decreased pituitary secretion of GH (P < 0.001). A significant negative response to IGF-I was already present at the dose of 50 ng mL−1 (P < 0.0001). However, the extent of the GH response to IGF-I seen in pigs of various ages differed depending on whether GRF was present. The present results therefore establish that IGF-I does exert a negative feedback on pituitary GH secretion in swine and that the age-related changes in this feedback are dependent on the presence of GRF. In swine, it appears that high circulating concentrations of GH in late-gestation fetuses are not a result of a lesser sensitivity of the somatotroph to the inhibitory actions of IGF-I. Key words: Pig, cell culture, pituitary, IGF-I, growth hormone, age

2011 ◽  
Vol 301 (4) ◽  
pp. R1143-R1152 ◽  
Author(s):  
Johannes D. Veldhuis ◽  
Cyril Y. Bowers

Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E2 (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E2/T administration potentiated both pulsatile ( P = 0.006) and entropic ( P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode ( P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass ( P = 0.005). The composite of gender, body mass index, E2, IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans.


1989 ◽  
Vol 120 (1) ◽  
pp. 121-128 ◽  
Author(s):  
Paul Franchimont ◽  
Didier Urbain-Choffray ◽  
Pierre Lambelin ◽  
Marie-Anne Fontaine ◽  
Gerard Frangin ◽  
...  

Abstract. This study sought to determine whether GH response to synthetic GHRH was impaired in 13 postmenopausal (55-71 years) as compared with that in 8 eugonadal women and whether IGF-I and bone metabolism were consequently depressed. Thereafter, the effects of daily iv injections of 80 μg GHRH-44 for 8 days were studied in the same postmenopausal group. In addition to significantly higher basal IGF-I and osteocalcin levels (P< 0.005) in eugonadal as compared with the postmenopausal women, the administration of one GHRH-44 injection resulted in significantly higher 120-min postinjection GH maximum peak and cumulative responses in the former group as well (P< 0.005). Highly significant correlations were observed between 17β-estradiol plasma levels and either GH maximum peak or cumulative responses to GHRH-44 when both groups were pooled together, but not when considered independently. In postmenopausal women, a correlation was found between both age and duration of menopause and GH responses. Repeated GHRH-44 injections in postmenopausal women induced a significant increase in GH response (P< 0.001) as well as in IGF-I levels from day 4 to 8. No phospho-calcium parameters were modified except for a significant rise in osteocalcin from day 2 to 8. These data indicate an age-related loss of sensitivity of somatotrope cells to GHRH-44 in postmenopausal women, partly corrected by repeated daily GHRH-44 injections. As a consequence of the GHRH-induced increase in GH secretion, IGF-I was also enhanced and may be responsible for a stimulatory effect on bone formation, as shown by the osteocalcin increase, uncoupled from bone resorption.


1995 ◽  
Vol 144 (1) ◽  
pp. 83-90 ◽  
Author(s):  
E Magnan ◽  
L Mazzocchi ◽  
M Cataldi ◽  
V Guillaume ◽  
A Dutour ◽  
...  

Abstract The physiological role of endogenous circulating GHreleasing hormone (GHRH) and somatostatin (SRIH) on spontaneous pulsatile and neostigmine-induced secretion of GH was investigated in adult rams actively immunized against each neuropeptide. All animals developed antibodies at concentrations sufficient for immunoneutralization of GHRH and SRIH levels in hypophysial portal blood. In the anti GHRH group, plasma GH levels were very low; the amplitude of GH pulses was strikingly reduced, although their number was unchanged. No stimulation of GH release was observed after neostigmine administration. The reduction of GH secretion was associated with a decreased body weight and a significant reduction in plasma IGF-I concentration. In the antiSRIH group, no changes in basal and pulsatile GH secretion or the GH response to neostigmine were observed as compared to controls. Body weight was not significantly altered and plasma IGF-I levels were reduced in these animals. These results suggest that in sheep, circulating SRIH (in the systemic and hypophysial portal vasculature) does not play a significant role in pulsatile and neostigmine-induced secretion of GH. The mechanisms of its influence on body weight and production of IGF-I remain to be determined. Journal of Endocrinology (1995) 144, 83–90


1987 ◽  
Vol 114 (4) ◽  
pp. 465-469 ◽  
Author(s):  
Gian Paolo Ceda ◽  
Robert G. Davis ◽  
Andrew R. Hoffman

Abstract. Glucocorticoids have been shown to have both stimulatory and suppressive effects on GH secretion in vitro and in vivo. In order to study the kinetics of glucocorticoid action on the somatotrope, cultured rat pituitary cells were exposed to dexamethasone for varying periods of time. During short-term incubations (≤ 4 h), dexamethasone inhibited GHRH and forskolin-elicited GH secretion, but during longer incubation periods, the glucocorticoid enhanced both basal and GHRH-stimulated GH release. The inhibitory effect of brief dexamethasone exposure was also seen in cells which previously had been exposed to dexamethasone. In addition, growth hormone secretion from cultured rat and human somatotropinoma cells was inhibited by a brief exposure to dexamethasone. Thus, the nature of glucocorticoid action on the isolated cultured somatotrope is biphasic, with brief exposure inhibiting, and more prolonged exposure stimulating GH secretion.


2008 ◽  
Vol 93 (11) ◽  
pp. 4471-4478 ◽  
Author(s):  
Johannes D. Veldhuis ◽  
Daniel M. Keenan ◽  
Joy N. Bailey ◽  
Adenborduin Adeniji ◽  
John M. Miles ◽  
...  

Background: Why pulsatile GH secretion declines in estrogen-deficient postmenopausal individuals remains unknown. One possibility is that estrogen not only enhances stimulation by secretagogues but also attenuates negative feedback by systemic IGF-I. Site: The study took place at an academic medical center. Subjects: Subjects were healthy postmenopausal women (n = 25). Methods: The study included randomized assignment to estradiol (n = 13) or placebo (n = 12) administration for 16 d and randomly ordered administration of 0, 1.0, 1.5, and 2.0 mg/m2 recombinant human IGF-I sc on separate days fasting. Analysis: Deconvolution analysis of pulsatile and basal GH secretion and approximate entropy (pattern-regularity) analysis were done to quantify feedback effects of IGF-I. Outcomes: Recombinant human IGF-I injections increased mean and peak serum IGF-I concentrations dose dependently (P &lt; 0.001) and suppressed mean GH concentrations (P &lt; 0.001), pulsatile GH secretion (P = 0.001), and approximate entropy (P &lt; 0.001). Decreased GH secretion was due to reduced secretory-burst mass (P = 0.005) and frequency (P &lt; 0.001) but not basal GH release (P = 0.52). Estradiol supplementation lowered endogenous, but did not alter infused, IGF-I concentrations while elevating mean GH concentrations (P = 0.012) and stimulating pulsatile (P = 0.008) and basal (P &lt; 0.001) GH secretion. Estrogen attenuated IGF-I’s inhibition of pulsatile GH secretion (P = 0.042) but was unable to restore physiological GH pulse frequency or normalize approximate entropy. Conclusion: Short-term estrogen replacement in postmenopausal women selectively mutes IGF-I-mediated feedback on pulsatile GH secretion. Disinhibition of negative feedback thus confers a novel mechanism by which estrogen may obviate hyposomatotropism.


2007 ◽  
Vol 292 (6) ◽  
pp. E1750-E1762 ◽  
Author(s):  
Xinyan Wang ◽  
Mable M. S. Chu ◽  
Anderson O. L. Wong

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent growth hormone (GH)-releasing factor in lower vertebrates. However, its functional interactions with other GH regulators have not been fully characterized. In fish models, norepinephrine (NE) inhibits GH release at the pituitary cell level, but its effects on GH synthesis have yet to be determined. We examined adrenergic inhibition of PACAP-induced GH secretion and GH gene expression using grass carp pituitary cells as a cell model. Through activation of pituitary α2-adrenoreceptors, NE or the α2-agonist clonidine reduced both basal and PACAP-induced GH release and GH mRNA expression. In carp pituitary cells, clonidine also suppressed cAMP production and intracellular Ca2+ levels and blocked PACAP induction of these two second messenger signals. In GH3 cells transfected with a reporter carrying the grass carp GH promoter, PACAP stimulation increased GH promoter activity, and this stimulatory effect could be abolished by NE treatment. In parallel experiments, clonidine reduced GH primary transcript and GH promoter activity without affecting GH mRNA stability, and these inhibitory actions were mimicked by inhibiting adenylate cyclase (AC), blocking protein kinase A (PKA), removing extracellular Ca2+ in the culture medium, or inactivating L-type voltage-sensitive Ca2+ channels (VSCC). Since our recent studies have shown that PACAP can induce GH secretion in carp pituitary cells through cAMP/PKA- and Ca2+/calmodulin-dependent mechanisms, these results, taken together, suggest that α2-adrenergic stimulation in the carp pituitary may inhibit PACAP-induced GH release and GH gene transcription by blocking the AC/cAMP/PKA pathway and Ca2+ entry through L-type VSCC.


1987 ◽  
Vol 115 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Eric F. Adams ◽  
Maria S. Venetikou ◽  
Christine A. Woods ◽  
S. Lacoumenta ◽  
J. M. Burrin

Abstract. Neuropeptide Y (NPY) is a 36 amino acid peptide, widely distributed throughout the brain and is found in hypothalamic neurones. This latter finding suggests that NPY may possess a hypophysiotropic function. A number of studies have demonstrated effects of NPY on LH and GH secretion by rat pituitary cells. We report here the results of experiments investigating the effects of NPY on GH secretion by tumorous human somatotropic pituitary cells in culture. NPY (0.25–25 nmol/l) inhibited GH secretion by 20–53%, the maximal effect depending upon the tumour studied. The potency of NPY was less than that of somatostatin (SRIH). The stimulatory effects of growth hormone releasing factor (GHRH) and theophylline were reduced by NPY, but NPY did not modify the inhibitory effect of SRIH on GH secretion. It is concluded that NPY may be involved in the control of GH secretion, at least by tumorous human pituitary somatotropes.


2006 ◽  
Vol 290 (5) ◽  
pp. E982-E988 ◽  
Author(s):  
Gabriella Segal-Lieberman ◽  
Hadara Rubinfeld ◽  
Moran Glick ◽  
Noga Kronfeld-Schor ◽  
Ilan Shimon

Melanin-concentrating hormone (MCH), a 19-amino acid orexigenic (appetite-stimulating) hypothalamic peptide, is an important regulator of energy homeostasis. It is cleaved from its precursor prepro-MCH (ppMCH) along with several other neuropeptides whose roles are not fully defined. Because pituitary hormones such as growth hormone (GH), ACTH, and thyroid-stimulating hormone affect body weight and composition, appetite, insulin sensitivity, and lipoprotein metabolism, we investigated whether MCH exerts direct effects on the human pituitary to regulate energy balance using dispersed human fetal pituitaries (21–22 wk gestation) and cultured GH-secreting adenomas. We found that MCH receptor-1 (MCH-R1), but not MCH receptor-2, is expressed in both normal (fetal and adult) human pituitary tissues and in GH cell adenomas. MCH (10 nM) stimulated GH release from human fetal pituitary cultures by up to 62% during a 4-h incubation ( P < 0.05). Interestingly, neuropeptide EI (10 nM), which is also cleaved from ppMCH, increased human GH secretion by up to 124% in fetal pituitaries. A milder, albeit significant, induction of GH secretion by MCH (20%) was seen in cultured GH-secreting pituitary adenomas. A comparable stimulation of GH secretion was seen when cultured mouse pituitary cells were treated with MCH. Treatment of cultured GH adenoma cells with MCH (100 nM) induced extracellular signal-regulated kinases 1 and 2 phosphorylation, suggesting activation of MCH-R1. In aggregate, these data suggest that MCH may regulate pituitary GH secretion and imply a potential cross-talk mechanism between appetite-regulating neuropeptides and pituitary hormones.


1989 ◽  
Vol 122 (3) ◽  
pp. 657-660 ◽  
Author(s):  
G. Caldwell ◽  
G. Hart ◽  
E. M. Kohner ◽  
J. M. Burrin

ABSTRACT The mechanism responsible for the suppression of GH secretion in hyperglycaemia and hypoglyceamia in rats has been investigated using perifusion of anterior pituitary cells. When perifused with Krebs-Ringer bicarbonate containing normal (5 mmol/l), high (20 mmol/l) and low (1 mmol/l) concentrations of glucose, the GH responses to GH-releasing factor (GRF) were 85 ± 5, 85·5 ± 5·4 and 89 ± 3·0 (s.e.m.)% respectively compared with the initial response to GRF at 5 mmol/l in each column. The mean GH response to GRF from anterior pituitary cells of normal rats was 6·58 ± 0·88 μg/three pituitaries, which was not statistically different from that of cells from rats with streptozotocin-induced diabetes (5·40 ± 0·68 μg/three pituitaries). It is concluded that GH suppression in diabetic rats and during hypoglycaemia is not mediated by changes in the GH response to GRF. Journal of Endocrinology (1989) 122, 657–660


2014 ◽  
Vol 307 (3) ◽  
pp. E326-E334 ◽  
Author(s):  
Shiri Shahmoon ◽  
Hadara Rubinfeld ◽  
Ido Wolf ◽  
Zvi R. Cohen ◽  
Moshe Hadani ◽  
...  

Klotho is a transmembranal protein highly expressed in the kidneys, choroid plexus, and anterior pituitary. Klotho can also be cleaved and shed and acts as a circulating hormone. Klotho-deficient mice ( kl/kl mice) develop a phenotype resembling early aging. Several lines of evidence suggest a role for klotho in the regulation of growth hormone (GH) secretion. The kl/kl mice are smaller compared with their wild-type counterparts, and their somatotropes show reduced numbers of secretory granules. Moreover, klotho is a potent inhibitor of the IGF-I pathway, a negative regulator of GH secretion. Therefore, we hypothesized that klotho may enhance GH secretion. The effect of klotho on GH secretion was examined in GH3 rat somatotrophs, cultured rat pituitaries, and cultured human GH-secreting adenomas. In all three models, klotho treatment increased GH secretion. Prolonged treatment of mice with intraperitoneal klotho injections increased mRNA levels of IGF-I and IGF-I-binding protein-3 mRNA in the liver, reflecting increased serum GH levels. In accord with its ability to inhibit the IGF-I pathway, klotho partially restored the inhibitory effect of IGF-I on GH secretion. Klotho is known to be a positive regulator of basic bFGF signaling. We studied rat pituitaries and human adenoma cultures and noted that bFGF increased GH secretion and stimulated ERK1/2 phosphorylation. Both effects were augmented following treatment with klotho. Taken together, our data indicate for the first time that klotho is a positive regulator of GH secretion and suggest the IGF-I and bFGF pathways as potential mediators of this effect.


Sign in / Sign up

Export Citation Format

Share Document